BookmarkSubscribeRSS Feed
cassifields
Calcite | Level 5

I am trying to do a linear regression to computer whether body weight can predict blood pressure after controlling for age, healthstatus, and physical activity. Here, my DV (blood pressure) is continuous and my IV(body weight)  is continuous. Also, I have several covariate IVs; age is continous, healthstatus is categorical (dummy coded 1-5), and physical activity is continous (# hours doing physical activity). To do this, should I use proc glm or proc reg?

5 REPLIES 5
gergely_batho
SAS Employee

I recommend proc glm. There you can use the class statement to dummy code the categorical variables.

You can use also proc reg, but then first you need to pre-process your data (creating dummy variables "manually").

cassifields
Calcite | Level 5

Can you check multicollinearity using proc glm?

Ksharp
Super User

You can use STEPWISE BACKWISW ... option of MODEL to get rid of multicollinearity and get the best model .

SteveDenham
Jade | Level 19

"Best models" with categorical variables are messy, and those methods in PROC REG really won't help.  The categorical dummy variables are by definition collinear.

I would approach this with PROC GLM or MIXED, and look at the chapter on Analysis of Covariance in SAS for Mixed Models, 2nd ed.

Steve Denham

Ksharp
Super User

Doc Steve,

Sorry to make you confused . My statistical background was not as good as you were .

hackathon24-white-horiz.png

The 2025 SAS Hackathon has begun!

It's finally time to hack! Remember to visit the SAS Hacker's Hub regularly for news and updates.

Latest Updates

What is Bayesian Analysis?

Learn the difference between classical and Bayesian statistical approaches and see a few PROC examples to perform Bayesian analysis in this video.

Find more tutorials on the SAS Users YouTube channel.

SAS Training: Just a Click Away

 Ready to level-up your skills? Choose your own adventure.

Browse our catalog!

Discussion stats
  • 5 replies
  • 1955 views
  • 0 likes
  • 4 in conversation