I am using proc traj to build a trajectory model and explore whether the covariates affect each trajectory group. Since proc traj does not have a by statement, I put together the parameter estimates for building the model using each impuation. trajectory_imputation(data): ID TIME BMI pulse HDLC LDLC TC TG glucose UA A 2002 23.0 87.0 1.16 2.82 5.16 1.93 4.82 357 A 2003 22.8 . 1.18 . . 1.80 . . A 2004 . 86 . 0 . 2.30 . . 4.54 359 B 2003 24.0 86 .0 1.19 2.30 5.17 1.75 4.54 358 ..... /*mi*/ proc mi data=trajectory_imputation out=imputed seed=2021 nimpute=20; var BMI pulse HDLC LDLC TC TG glucose UA; mcmc; run; /*traj*/ data ParameterEstimates; set oe; /*include PARMS STDERR COV*/ if _TYPE_="PARMS" or _TYPE_="STDERR"; run; /*mianalyze for one trajectory group*/ proc transpose data=ParameterEstimates out=ParameterEstimates (rename=(_NAME_=Parameter PARMS=Estimate STDERR=StdErr)); var INTERC01 LINEAR01 QUADRA01 CUBIC01 BMI001 PULSE001 HDLC001 LDLC001 TC001 TG001 GLUCOSE001 UA001; by _imputation_; id _TYPE_; run; ODS OUTPUT ParameterEstimates=RESULT; proc mianalyze parms=ParameterEstimates; modeleffects INTERC01 LINEAR01 QUADRA01 CUBIC01 BMI001 PULSE001 HDLC001 LDLC001 TC001 TG001 GLUCOSE001 UA001; run; I also found that this situation may occur if the parameter estimates and standard errors of the variables between each imputation are large.Unfortunately, I can't figure out the reason for the large difference between each imputed datasets.Thank you very much for your help!
... View more