Hello statisticians,
I have been using proc mianalyze for sometimes and i found that some variables showed statistical significance in each dataset after multiple imputation, but they didn't show statistical significance in proc mianalyse. I tried to change the number of imputation but unfortunately found that it did not work. I would be very grateful if anyone could explain this phenomenon.
Calling @Rick_SAS
Please post your code so that we can have a better chance of answering your questions.
I am using proc traj to build a trajectory model and explore whether the covariates affect each trajectory group. Since proc traj does not have a by statement, I put together the parameter estimates for building the model using each impuation.
trajectory_imputation(data):
ID TIME BMI pulse HDLC LDLC TC TG glucose UA
A 2002 23.0 87.0 1.16 2.82 5.16 1.93 4.82 357
A 2003 22.8 . 1.18 . . 1.80 . .
A 2004 . 86 . 0 . 2.30 . . 4.54 359
B 2003 24.0 86 .0 1.19 2.30 5.17 1.75 4.54 358
.....
/*mi*/
proc mi data=trajectory_imputation out=imputed
seed=2021 nimpute=20;
var BMI pulse HDLC LDLC TC TG glucose UA;
mcmc;
run;
/*traj*/
data ParameterEstimates;
set oe; /*include PARMS STDERR COV*/
if _TYPE_="PARMS" or _TYPE_="STDERR";
run;
/*mianalyze for one trajectory group*/
proc transpose data=ParameterEstimates out=ParameterEstimates (rename=(_NAME_=Parameter PARMS=Estimate STDERR=StdErr));
var INTERC01 LINEAR01 QUADRA01 CUBIC01 BMI001 PULSE001 HDLC001 LDLC001 TC001 TG001 GLUCOSE001 UA001;
by _imputation_;
id _TYPE_;
run;
ODS OUTPUT ParameterEstimates=RESULT;
proc mianalyze parms=ParameterEstimates;
modeleffects INTERC01 LINEAR01 QUADRA01 CUBIC01 BMI001 PULSE001 HDLC001 LDLC001 TC001 TG001 GLUCOSE001 UA001;
run;
I also found that this situation may occur if the parameter estimates and standard errors of the variables between each imputation are large.Unfortunately, I can't figure out the reason for the large difference between each imputed datasets.Thank you very much for your help!
Without seeing your code I would say that this is likely due to a large fraction of missing information (FMI). You should expect an increase in the variance (and thus a reduction in significance), specifically the between imputation variance, when the FMI is high. This section of the documentation will be helpful in that regard.
SAS Help Center: Multiple Imputation Efficiency
The other possible cause is that you have a bad imputation model (in the Proc MI step) or there is non-convergence in the MI models.
SAS Help Center: Checking Convergence in MCMC
If you can post your code and LOG (including the MI, modeling and MIANALYZE steps) then there might be something more concrete I can suggest.
Registration is now open for SAS Innovate 2025 , our biggest and most exciting global event of the year! Join us in Orlando, FL, May 6-9.
Sign up by Dec. 31 to get the 2024 rate of just $495.
Register now!
ANOVA, or Analysis Of Variance, is used to compare the averages or means of two or more populations to better understand how they differ. Watch this tutorial for more.
Find more tutorials on the SAS Users YouTube channel.