Let me see if I understand your experimental design. I am making parts of this up, so correct my description as need be.
You have two years, and you are thinking of year as a random effects factor.
You have some (unspecified) number of "blocks" within each year, and you are using different blocks in different years.
Within each block, you have one "superplot" (the whole plot unit, and a random effects factor) randomly assigned to each level of the fixed effects factor irrigation (the whole plot treatment). (This is a split-plot with whole plots in blocks, as opposed to a split-plot with whole plots in a completely randomized design.)
You have "plots" within each whole plot unit, one plot randomly assigned to each level of the fixed effects factor graft.
You measure tomato fruit production multiple times in each plot (16 times in one year, 12 times in the other).
Some thoughts:
1. When I'm sussing out a mixed model, I find it extremely helpful to distinguish between random effects factors (i.e., experimental units) and their associated fixed effects factors (i.e., experimental treatments). For example, the whole plot unit is "superplot" and the whole plot treatment is "irrigation". I deliberately give different names to the unit and the treatment because they are not the same thing. Just saying "whole plot" does not provide sufficient information.
2. With only two levels, year does not make a very good random effects factor. The model attempts to estimate a variance among years based on the most minimal of data (n=2). For another thing, if year is random and if blocks are nested within years (i.e., different blocks in different years), then one can argue that the inference space for your study is defined by years--year becomes the fundamental replicating factor. With only two years, this is clearly problematic. I'd ponder incorporating year as a fixed effects factor, (randomly?) assigned to blocks. Iit's not always a black-and-white decision.
3. With 16 levels of harvest in one year and 12 levels of harvest in the second year, and if harvest is a classification fixed effects factor, then you have a problem, regardless of whether you use MIXED or GLIMMIX. The irrigation x graft x harvest factorial is incomplete: you do not have data for all combinations of these factors. Consequently, if you include interactions with harvest in your model, some lsmeans will be reported as "non-est" (not estimable); and main effect means for irrigation and graft will be biased regardless of whether interactions are included. You could extract a subset of harvest dates that "match" between the two years (although this exercise may be too subjective to justify adequately). Or you could incorporate harvest as a continuous factor, and regress awtrun on harvest level (i.e., date), which poses additional analysis considerations (e.g., linearity? random slopes?). Or you could combine data over harvests, for example total production for the season and then drop harvest as a factor in the model. Or you could analyze each year separately. Or some other approach that makes sense to you.
4. If response data are normally distributed (conditional on the predictors), then MIXED and GLIMMIX will produce the same results. Syntax-wise, the REPEATED statement in MIXED is replaced by the RANDOM / RESIDUAL statement in GLIMMIX. If you are switching to GLIMMIX to deal with non-normal data, then some modifications to the random parts of the model may be necessary, for example to accommodate overdispersion.
... View more