I will also vote not, but for other reason that what @SteveDenham mention.
You can completely ignore overdispersion in such Poisson regression model. The reason is that the data doesn't need to be Poisson distributed. Actually, the data which is behind your number of events is time-to-event data. If the assumption of piecewise constant rates are fullfilled, then data can be analyzed by poisson regression because the likelihood function in the Poisson regression is exactly the likelihood function you want to maximize if you had the original time-to-event data. Therefore, it is wrong to use Poisson regression in such model to validate the distribution of data, it is only a trick to maximize the likelihood function and thereby make estimates and relevant hyphotesis testing about covariates.
It is actually quite easy to verify: simulate n datapoints from exponential distribution then cumulate the values. you can now estimate the rate using poisson regression (model n=/dist=poisson link=log offset=logcumtime). In such model it is obvious that it is meaning less to talk about overdispersion even that the dispersion index will be showed. So just forget about dispersion in Poisson regression.
If the data was truly count-data, then it is much more relevant to look on the assumption of poisondistributed data, and then the dispersion index is much more relevant.
... View more