Dear friends,
I need to perform linear interpolations
I do it correctly when I have only one dataset in one table
However, I have many many different datasets in one table and each dataset should have its own interpolation curve
Let's look at a simple example with only two datasets (A & B):
| NAME | DEPTH | X | Y |
| A | 0,00 | 496323,56 | 6277756,14 |
| 0,50 | , | , | |
| 1,00 | , | , | |
| 1,50 | , | , | |
| 2,00 | , | , | |
| 2,50 | , | , | |
| 3,00 | , | , | |
| 3,50 | , | , | |
| 4,00 | , | , | |
| 4,50 | , | , | |
| 5,00 | , | , | |
| 5,50 | , | , | |
| 6,00 | , | , | |
| A | 6,50 | 496210,94 | 6277828,15 |
| 7,00 | , | , | |
| 7,50 | , | , | |
| 8,00 | , | , | |
| 8,50 | , | , | |
| 9,00 | , | , | |
| 9,50 | , | , | |
| 10,00 | , | , | |
| 10,50 | , | , | |
| A | 11,00 | 496210,87 | 6277828,25 |
| B | 0,00 | 516239.55347 | 6247816.3269 |
| 0.5 | |||
| 1,00 | |||
| 1,50 | |||
| 2,00 | |||
| 2,50 | |||
| 3,00 | |||
| 3,50 | |||
| 4,00 | |||
| 4,50 | |||
| 5,00 | |||
| 5,50 | |||
| B | 6,00 | 516239.55347 | 6247816.3269 |
| 6,50 | |||
| 7,00 | |||
| 7,50 | |||
| 8,00 | |||
| 8,50 | |||
| B | 9,00 | 516239.51534 | 6247816.3202 |
| 9,50 | |||
| 10,00 | |||
| 10,50 | |||
| 11,00 | |||
| 11,50 | |||
| 12,00 | |||
| B | 12,50 | 516239.47966 | 6247816.3124 |
I use the following proc procedure to perform linear regression for one dataset:
proc expand data=&_INPUT1 out=&_OUTPUT1;
convert X=linear_X / method=join;
id DEPTH;
run;
proc expand data=&_INPUT1 out=&_OUTPUT1;
convert Y=linear_Y / method=join;
id DEPTH;
run;
The interpolation will fill the missing values for X and Y
However, when I have two datasets (in this case A & B) or more I can't use this formula
I know I need some kind of DO LOOP somewhere but I don't know where and how I should use it
Can you please help me with it?
Thank you vey much!
Best regards
Farshid
Does this help you?
data have;
input NAME $ (DEPTH X Y)(:comma18.4);
infile datalines dsd dlm='|';
datalines;
A|0,00 |496323,56 |6277756,14
|0,50 | |
|1,00 | |
|1,50 | |
|2,00 | |
|2,50 | |
|3,00 | |
|3,50 | |
|4,00 | |
|4,50 | |
|5,00 | |
|5,50 | |
|6,00 | |
A|6,50 |496210,94 |6277828,15
|7,00 | |
|7,50 | |
|8,00 | |
|8,50 | |
|9,00 | |
|9,50 | |
|10,00| |
|10,50| |
A|11,00|496210,87 |6277828,25
B|0,00 |516239.55347|6247816.3269
|0.5 | |
|1,00 | |
|1,50 | |
|2,00 | |
|2,50 | |
|3,00 | |
|3,50 | |
|4,00 | |
|4,50 | |
|5,00 | |
|5,50 | |
B|6,00 |516239.55347|6247816.3269
|6,50 | |
|7,00 | |
|7,50 | |
|8,00 | |
|8,50 | |
B|9,00 |516239.51534|6247816.3202
|9,50 | |
|10,00| |
|10,50| |
|11,00| |
|11,50| |
|12,00| |
B|12,50|516239.47966|6247816.3124
;
data temp(drop=_:);
set have;
if not missing(Name) then _Name=Name;
Name=coalescec(Name, _Name);
retain _Name;
run;
proc sort data=temp;
by Name DEPTH;
run;
proc expand data=temp out=want;
by Name;
id DEPTH;
convert X=linear_X / method=join;
convert Y=linear_Y / method=join;
run;
It's finally time to hack! Remember to visit the SAS Hacker's Hub regularly for news and updates.
Learn how use the CAT functions in SAS to join values from multiple variables into a single value.
Find more tutorials on the SAS Users YouTube channel.
Ready to level-up your skills? Choose your own adventure.