SAS Programming

DATA Step, Macro, Functions and more
BookmarkSubscribeRSS Feed
☑ This topic is solved. Need further help from the community? Please sign in and ask a new question.
Rick_SAS
SAS Super FREQ

> I know from previous research that the RFI for each study is 5, 5, 10 and 4.

 

Well, the most likely explanation is that I misunderstood what you are asking for. So you need to clarify the problem. Please explain the above statement by constructing an example for Study A that runs Fisher's Exact Test and results in a significant p-value. In my previous response, I interpreted '5' for Study A to mean the following frequency table and analysis:

data A;
input Group Event Count;
datalines;
1 1 5
1 0 146
2 1 1
2 0 148
;

proc freq data=A;
   tables Event*Group / norow nocol nopercent;
   exact fisher;
   weight Count;
run;

Please explain what table you want to analyze for Study A when '5' is used. Also, explain the logic by which you obtained the table.  Then do the same explanation for Study C, which uses '10'.

GS2
Obsidian | Level 7 GS2
Obsidian | Level 7

Rick,

 

This is a method to review already published data. Below are the datalines for this table. The p-value for this dichotomous outcome is >0.05. The goal is to see the minimum number of nonevents that need to change to an event for each outcome measure in order for the nonsignificant p-value, as measured by Fisher's exact test, to become significant. Alpha level 0.05. Based on previous analysis, I know the minimum number of events needed is 5 for this study and want to determine a way to replicate the analysis in SAS. 

data want;
	input study $ group $ outcome $;
	datalines;
		A	Exp	Yes
		A	Exp	Yes
		A	Exp	Yes
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Con	Yes
		A	Con	Yes
		A	Con	Yes
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		;
run;

proc freq data= want;
	table group*outcome /chisq fisher;
run;
Rick_SAS
SAS Super FREQ

Please explain the statement "Based on previous analysis, I know the minimum number of events needed is 5 for this study."

 

When I run your DATA step, I see it is equivalent to the following shorter program:

data Have;
   length Study $1 Group $3 Outcome $3;
	input study $ group $ outcome $ Count;
	datalines;
A	Con	No  146
A	Con	Yes   3
A	Exp   No  148
A	Exp	Yes   3
;

proc freq data= Have;
	table group*outcome /chisq fisher norow nocol nopercent;
   weight count;
run;

You say that you can change 5 nonevents to events and get a significant p-value. Please show how. Here is a new data set in which I have changed 5 nonevents in the experimental group to events. Upon rerunning the analysis, I do not get a significant p-value:

data New;
   length Study $1 Group $3 Outcome $3;
	input study $ group $ outcome $ Count;
	datalines;
A	Con	No  146
A	Con	Yes   3
A	Exp   No  143
A	Exp	Yes   8
;

proc freq data= New;
	table group*outcome /chisq fisher norow nocol nopercent;
   weight count;
   exact fisher;
run;

If I change 5 observations from Yes to No in the control group, I also do not get a significant p-value. Show me what you do to the original data to get a significant p-value.

 

sas-innovate-white.png

Join us for our biggest event of the year!

Four days of inspiring keynotes, product reveals, hands-on learning opportunities, deep-dive demos, and peer-led breakouts. Don't miss out, May 6-9, in Orlando, Florida.

 

View the full agenda.

Register now!

How to Concatenate Values

Learn how use the CAT functions in SAS to join values from multiple variables into a single value.

Find more tutorials on the SAS Users YouTube channel.

SAS Training: Just a Click Away

 Ready to level-up your skills? Choose your own adventure.

Browse our catalog!

Discussion stats
  • 17 replies
  • 3183 views
  • 7 likes
  • 4 in conversation