BookmarkSubscribeRSS Feed
☑ This topic is solved. Need further help from the community? Please sign in and ask a new question.
Rick_SAS
SAS Super FREQ

> I know from previous research that the RFI for each study is 5, 5, 10 and 4.

 

Well, the most likely explanation is that I misunderstood what you are asking for. So you need to clarify the problem. Please explain the above statement by constructing an example for Study A that runs Fisher's Exact Test and results in a significant p-value. In my previous response, I interpreted '5' for Study A to mean the following frequency table and analysis:

data A;
input Group Event Count;
datalines;
1 1 5
1 0 146
2 1 1
2 0 148
;

proc freq data=A;
   tables Event*Group / norow nocol nopercent;
   exact fisher;
   weight Count;
run;

Please explain what table you want to analyze for Study A when '5' is used. Also, explain the logic by which you obtained the table.  Then do the same explanation for Study C, which uses '10'.

GS2
Obsidian | Level 7 GS2
Obsidian | Level 7

Rick,

 

This is a method to review already published data. Below are the datalines for this table. The p-value for this dichotomous outcome is >0.05. The goal is to see the minimum number of nonevents that need to change to an event for each outcome measure in order for the nonsignificant p-value, as measured by Fisher's exact test, to become significant. Alpha level 0.05. Based on previous analysis, I know the minimum number of events needed is 5 for this study and want to determine a way to replicate the analysis in SAS. 

data want;
	input study $ group $ outcome $;
	datalines;
		A	Exp	Yes
		A	Exp	Yes
		A	Exp	Yes
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Exp	No
		A	Con	Yes
		A	Con	Yes
		A	Con	Yes
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		A	Con	No
		;
run;

proc freq data= want;
	table group*outcome /chisq fisher;
run;
Rick_SAS
SAS Super FREQ

Please explain the statement "Based on previous analysis, I know the minimum number of events needed is 5 for this study."

 

When I run your DATA step, I see it is equivalent to the following shorter program:

data Have;
   length Study $1 Group $3 Outcome $3;
	input study $ group $ outcome $ Count;
	datalines;
A	Con	No  146
A	Con	Yes   3
A	Exp   No  148
A	Exp	Yes   3
;

proc freq data= Have;
	table group*outcome /chisq fisher norow nocol nopercent;
   weight count;
run;

You say that you can change 5 nonevents to events and get a significant p-value. Please show how. Here is a new data set in which I have changed 5 nonevents in the experimental group to events. Upon rerunning the analysis, I do not get a significant p-value:

data New;
   length Study $1 Group $3 Outcome $3;
	input study $ group $ outcome $ Count;
	datalines;
A	Con	No  146
A	Con	Yes   3
A	Exp   No  143
A	Exp	Yes   8
;

proc freq data= New;
	table group*outcome /chisq fisher norow nocol nopercent;
   weight count;
   exact fisher;
run;

If I change 5 observations from Yes to No in the control group, I also do not get a significant p-value. Show me what you do to the original data to get a significant p-value.

 

SAS Innovate 2025: Save the Date

 SAS Innovate 2025 is scheduled for May 6-9 in Orlando, FL. Sign up to be first to learn about the agenda and registration!

Save the date!

How to Concatenate Values

Learn how use the CAT functions in SAS to join values from multiple variables into a single value.

Find more tutorials on the SAS Users YouTube channel.

SAS Training: Just a Click Away

 Ready to level-up your skills? Choose your own adventure.

Browse our catalog!

Discussion stats
  • 17 replies
  • 2292 views
  • 7 likes
  • 4 in conversation