BookmarkSubscribeRSS Feed
topkatz
Obsidian | Level 7
Hi.

For a given mean, m, I have computed individual Poisson probabilities three ways.

1. Using the SAS POISSON function. This is cumulative, so
P(m,n) = POISSON(m,n) - POISSON(m,(n-1))

2. Using the formula
P(m,n) = exp(-m) * (m**n) / (n!)
In SAS, this is computed as: EXP(-m) * (m**n) / FACT(n)

3. Using the recursive formula:
P(m,0) = exp(-m) and P(m,n) = P(m,(n-1)) * (m / n)


Using m = 5 and computing up to n = 30, I have found bigger differences between the methods than I would like to see. Methods 2 and 3 agree all the way to n = 30, but Method 1, using the SAS POISSON function, starts to diverge at n = 26.


CAN ANYONE PLEASE TELL ME WHICH METHOD IS THE MOST ACCURATE?



18 %let poimean = 5 ;
19
20
21 %let uplim = 30 ;

37 * method 2 ;
38 data _null_ ;
39 expm = exp(-&poimean.) ;
40 put expm= ;
41 do n = 0 to &uplim. ;
42 poi_n = expm * (&poimean.**n) / fact(n) ;
43 put n= poi_n= ;
44 end ;
45 run ;

expm=0.006737947
n=0 poi_n=0.006737947
n=1 poi_n=0.033689735
n=2 poi_n=0.0842243375
n=3 poi_n=0.1403738958
n=4 poi_n=0.1754673698
n=5 poi_n=0.1754673698
n=6 poi_n=0.1462228081
n=7 poi_n=0.104444863
n=8 poi_n=0.0652780393
n=9 poi_n=0.0362655774
n=10 poi_n=0.0181327887
n=11 poi_n=0.0082421767
n=12 poi_n=0.0034342403
n=13 poi_n=0.0013208616
n=14 poi_n=0.0004717363
n=15 poi_n=0.0001572454
n=16 poi_n=0.0000491392
n=17 poi_n=0.0000144527
n=18 poi_n=4.0146404E-6
n=19 poi_n=1.0564843E-6
n=20 poi_n=2.6412108E-7
n=21 poi_n=6.2885971E-8
n=22 poi_n=1.4292266E-8
n=23 poi_n=3.1070144E-9
n=24 poi_n=6.472947E-10
n=25 poi_n=1.294589E-10
n=26 poi_n=2.489595E-11
n=27 poi_n=4.610361E-12
n=28 poi_n=8.232787E-13
n=29 poi_n=1.419446E-13
n=30 poi_n=2.365743E-14
NOTE: DATA statement used (Total process time):
real time 0.15 seconds
cpu time 0.03 seconds


46
47 * method 3 ;
48 data _null_ ;
49 expm = exp(-&poimean.) ;
50 n = 0 ;
51 poi_n = expm ;
52 put n= poi_n= ;
53 do n = 1 to &uplim. ;
54 poi_n = poi_n * &poimean. / n ;
55 put n= poi_n= ;
56 end ;
57 run ;

n=0 poi_n=0.006737947
n=1 poi_n=0.033689735
n=2 poi_n=0.0842243375
n=3 poi_n=0.1403738958
n=4 poi_n=0.1754673698
n=5 poi_n=0.1754673698
n=6 poi_n=0.1462228081
n=7 poi_n=0.104444863
n=8 poi_n=0.0652780393
n=9 poi_n=0.0362655774
n=10 poi_n=0.0181327887
n=11 poi_n=0.0082421767
n=12 poi_n=0.0034342403
n=13 poi_n=0.0013208616
n=14 poi_n=0.0004717363
n=15 poi_n=0.0001572454
n=16 poi_n=0.0000491392
n=17 poi_n=0.0000144527
n=18 poi_n=4.0146404E-6
n=19 poi_n=1.0564843E-6
n=20 poi_n=2.6412108E-7
n=21 poi_n=6.2885971E-8
n=22 poi_n=1.4292266E-8
n=23 poi_n=3.1070144E-9
n=24 poi_n=6.472947E-10
n=25 poi_n=1.294589E-10
n=26 poi_n=2.489595E-11
n=27 poi_n=4.610361E-12
n=28 poi_n=8.232787E-13
n=29 poi_n=1.419446E-13
n=30 poi_n=2.365743E-14
NOTE: DATA statement used (Total process time):
real time 0.03 seconds
cpu time 0.03 seconds


58 * method 1 ;
59 data _null_ ;
60 n = 0 ;
61 poi_n = Poisson(&poimean.,n) ;
62 put n= poi_n= ;
63 nm1 = n ;
64 do n = 1 to &uplim. ;
65 poi_n = Poisson(&poimean.,n) - Poisson(&poimean.,nm1) ;
66 put n= poi_n= ;
67 nm1 = n ;
68 end ;
69 run ;

n=0 poi_n=0.006737947
n=1 poi_n=0.033689735
n=2 poi_n=0.0842243375
n=3 poi_n=0.1403738958
n=4 poi_n=0.1754673698
n=5 poi_n=0.1754673698
n=6 poi_n=0.1462228081
n=7 poi_n=0.104444863
n=8 poi_n=0.0652780393
n=9 poi_n=0.0362655774
n=10 poi_n=0.0181327887
n=11 poi_n=0.0082421767
n=12 poi_n=0.0034342403
n=13 poi_n=0.0013208616
n=14 poi_n=0.0004717363
n=15 poi_n=0.0001572454
n=16 poi_n=0.0000491392
n=17 poi_n=0.0000144527
n=18 poi_n=4.0146404E-6
n=19 poi_n=1.0564843E-6
n=20 poi_n=2.6412108E-7
n=21 poi_n=6.2885971E-8
n=22 poi_n=1.4292266E-8
n=23 poi_n=3.1070144E-9
n=24 poi_n=6.472947E-10
n=25 poi_n=1.294589E-10
n=26 poi_n=2.489597E-11
n=27 poi_n=4.610312E-12
n=28 poi_n=8.233414E-13
n=29 poi_n=1.418865E-13
n=30 poi_n=2.364775E-14


Thanks!
1 REPLY 1
Ksharp
Super User
Hi.
I think the problem is n! .when n greater than 26 n! will be very very large to out the range of sas 's exact integer.Normally due to big n ,we will use Scott Formula
to approach n! .That is the reason why method 1 is different from 2 3.
In my opinion,Recommend to use method 1.
I am not quit sure my answer is right,it is just my opinion.


Ksharp

sas-innovate-2026-white.png



April 27 – 30 | Gaylord Texan | Grapevine, Texas

Registration is open

Walk in ready to learn. Walk out ready to deliver. This is the data and AI conference you can't afford to miss.
Register now and lock in 2025 pricing—just $495!

Register now

How to Concatenate Values

Learn how use the CAT functions in SAS to join values from multiple variables into a single value.

Find more tutorials on the SAS Users YouTube channel.

SAS Training: Just a Click Away

 Ready to level-up your skills? Choose your own adventure.

Browse our catalog!

Discussion stats
  • 1 reply
  • 1332 views
  • 0 likes
  • 2 in conversation