BookmarkSubscribeRSS Feed
topkatz
Obsidian | Level 7
Hi.

For a given mean, m, I have computed individual Poisson probabilities three ways.

1. Using the SAS POISSON function. This is cumulative, so
P(m,n) = POISSON(m,n) - POISSON(m,(n-1))

2. Using the formula
P(m,n) = exp(-m) * (m**n) / (n!)
In SAS, this is computed as: EXP(-m) * (m**n) / FACT(n)

3. Using the recursive formula:
P(m,0) = exp(-m) and P(m,n) = P(m,(n-1)) * (m / n)


Using m = 5 and computing up to n = 30, I have found bigger differences between the methods than I would like to see. Methods 2 and 3 agree all the way to n = 30, but Method 1, using the SAS POISSON function, starts to diverge at n = 26.


CAN ANYONE PLEASE TELL ME WHICH METHOD IS THE MOST ACCURATE?



18 %let poimean = 5 ;
19
20
21 %let uplim = 30 ;

37 * method 2 ;
38 data _null_ ;
39 expm = exp(-&poimean.) ;
40 put expm= ;
41 do n = 0 to &uplim. ;
42 poi_n = expm * (&poimean.**n) / fact(n) ;
43 put n= poi_n= ;
44 end ;
45 run ;

expm=0.006737947
n=0 poi_n=0.006737947
n=1 poi_n=0.033689735
n=2 poi_n=0.0842243375
n=3 poi_n=0.1403738958
n=4 poi_n=0.1754673698
n=5 poi_n=0.1754673698
n=6 poi_n=0.1462228081
n=7 poi_n=0.104444863
n=8 poi_n=0.0652780393
n=9 poi_n=0.0362655774
n=10 poi_n=0.0181327887
n=11 poi_n=0.0082421767
n=12 poi_n=0.0034342403
n=13 poi_n=0.0013208616
n=14 poi_n=0.0004717363
n=15 poi_n=0.0001572454
n=16 poi_n=0.0000491392
n=17 poi_n=0.0000144527
n=18 poi_n=4.0146404E-6
n=19 poi_n=1.0564843E-6
n=20 poi_n=2.6412108E-7
n=21 poi_n=6.2885971E-8
n=22 poi_n=1.4292266E-8
n=23 poi_n=3.1070144E-9
n=24 poi_n=6.472947E-10
n=25 poi_n=1.294589E-10
n=26 poi_n=2.489595E-11
n=27 poi_n=4.610361E-12
n=28 poi_n=8.232787E-13
n=29 poi_n=1.419446E-13
n=30 poi_n=2.365743E-14
NOTE: DATA statement used (Total process time):
real time 0.15 seconds
cpu time 0.03 seconds


46
47 * method 3 ;
48 data _null_ ;
49 expm = exp(-&poimean.) ;
50 n = 0 ;
51 poi_n = expm ;
52 put n= poi_n= ;
53 do n = 1 to &uplim. ;
54 poi_n = poi_n * &poimean. / n ;
55 put n= poi_n= ;
56 end ;
57 run ;

n=0 poi_n=0.006737947
n=1 poi_n=0.033689735
n=2 poi_n=0.0842243375
n=3 poi_n=0.1403738958
n=4 poi_n=0.1754673698
n=5 poi_n=0.1754673698
n=6 poi_n=0.1462228081
n=7 poi_n=0.104444863
n=8 poi_n=0.0652780393
n=9 poi_n=0.0362655774
n=10 poi_n=0.0181327887
n=11 poi_n=0.0082421767
n=12 poi_n=0.0034342403
n=13 poi_n=0.0013208616
n=14 poi_n=0.0004717363
n=15 poi_n=0.0001572454
n=16 poi_n=0.0000491392
n=17 poi_n=0.0000144527
n=18 poi_n=4.0146404E-6
n=19 poi_n=1.0564843E-6
n=20 poi_n=2.6412108E-7
n=21 poi_n=6.2885971E-8
n=22 poi_n=1.4292266E-8
n=23 poi_n=3.1070144E-9
n=24 poi_n=6.472947E-10
n=25 poi_n=1.294589E-10
n=26 poi_n=2.489595E-11
n=27 poi_n=4.610361E-12
n=28 poi_n=8.232787E-13
n=29 poi_n=1.419446E-13
n=30 poi_n=2.365743E-14
NOTE: DATA statement used (Total process time):
real time 0.03 seconds
cpu time 0.03 seconds


58 * method 1 ;
59 data _null_ ;
60 n = 0 ;
61 poi_n = Poisson(&poimean.,n) ;
62 put n= poi_n= ;
63 nm1 = n ;
64 do n = 1 to &uplim. ;
65 poi_n = Poisson(&poimean.,n) - Poisson(&poimean.,nm1) ;
66 put n= poi_n= ;
67 nm1 = n ;
68 end ;
69 run ;

n=0 poi_n=0.006737947
n=1 poi_n=0.033689735
n=2 poi_n=0.0842243375
n=3 poi_n=0.1403738958
n=4 poi_n=0.1754673698
n=5 poi_n=0.1754673698
n=6 poi_n=0.1462228081
n=7 poi_n=0.104444863
n=8 poi_n=0.0652780393
n=9 poi_n=0.0362655774
n=10 poi_n=0.0181327887
n=11 poi_n=0.0082421767
n=12 poi_n=0.0034342403
n=13 poi_n=0.0013208616
n=14 poi_n=0.0004717363
n=15 poi_n=0.0001572454
n=16 poi_n=0.0000491392
n=17 poi_n=0.0000144527
n=18 poi_n=4.0146404E-6
n=19 poi_n=1.0564843E-6
n=20 poi_n=2.6412108E-7
n=21 poi_n=6.2885971E-8
n=22 poi_n=1.4292266E-8
n=23 poi_n=3.1070144E-9
n=24 poi_n=6.472947E-10
n=25 poi_n=1.294589E-10
n=26 poi_n=2.489597E-11
n=27 poi_n=4.610312E-12
n=28 poi_n=8.233414E-13
n=29 poi_n=1.418865E-13
n=30 poi_n=2.364775E-14


Thanks!
1 REPLY 1
Ksharp
Super User
Hi.
I think the problem is n! .when n greater than 26 n! will be very very large to out the range of sas 's exact integer.Normally due to big n ,we will use Scott Formula
to approach n! .That is the reason why method 1 is different from 2 3.
In my opinion,Recommend to use method 1.
I am not quit sure my answer is right,it is just my opinion.


Ksharp

sas-innovate-2024.png

Available on demand!

Missed SAS Innovate Las Vegas? Watch all the action for free! View the keynotes, general sessions and 22 breakouts on demand.

 

Register now!

How to Concatenate Values

Learn how use the CAT functions in SAS to join values from multiple variables into a single value.

Find more tutorials on the SAS Users YouTube channel.

Click image to register for webinarClick image to register for webinar

Classroom Training Available!

Select SAS Training centers are offering in-person courses. View upcoming courses for:

View all other training opportunities.

Discussion stats
  • 1 reply
  • 879 views
  • 0 likes
  • 2 in conversation