I have the following data, where some of the quantities are missing. I want to replace them by a rolling 3 month average of previous 3 months. I've tried to explain what I'm trying to achieve here-
ID | Month | Qty | Rolling average | Rolling average value |
1 | Jan | 2 | - | - |
1 | Feb | 3 | 2 | 2 |
1 | Mar | 2 | average(3,2) | 2.5 |
1 | Apr | 6 | average(2,3,2) | 2.333333333 |
1 | May | 4 | average(6,2,3) | 3.666666667 |
1 | Jun | 5 | AVERAGE(4,6,2) | 4 |
1 | Jul | . | average(5,4,6) | 5 |
1 | Aug | . | average(5,5,4) | 4.666666667 |
1 | Sep | . | average(4.666667,5,5) | 4.888888889 |
1 | Oct | . | average(4.8888889,4.666667,5) | 4.851851852 |
1 | Nov | . | average(4.8518519, 4.888889, 4.666667) | 4.802469136 |
1 | Dec | . | average(4.8024691, 4.8518519, 4.8888889) | 4.847736626 |
2 | Jan | 5 | ||
2 | Feb | 1 | ||
2 | Mar | 4 | ||
2 | Apr | 3 | ||
2 | May | 4 | ||
2 | Jun | 6 | ||
2 | Jul | . | ||
2 | Aug | . | ||
2 | Sep | . | ||
2 | Oct | . | ||
2 | Nov | . | ||
2 | Dec | . |
Can anyone please help on how to do this in SAS?
Try this and replace as you like.
data have;
input ID Month $ Qty;
datalines;
1 Jan 2
1 Feb 3
1 Mar 2
1 Apr 6
1 May 4
1 Jun 5
1 Jul .
1 Aug .
1 Sep .
1 Oct .
1 Nov .
1 Dec .
2 Jan 5
2 Feb 1
2 Mar 4
2 Apr 3
2 May 4
2 Jun 6
2 Jul .
2 Aug .
2 Sep .
2 Oct .
2 Nov .
2 Dec .
;
data want;
array lag[0:2] _temporary_;
call missing(of lag[*]);
do _N_ = 1 by 1 until (last.id);
set have;
by id;
output;
lag[mod(_N_, 3)] = coalesce(Qty, avg);
avg = mean(of lag[*]);
end;
run;
Result:
ID Month Qty avg 1 Jan 2 . 1 Feb 3 2 1 Mar 2 2.5 1 Apr 6 2.3333333333 1 May 4 3.6666666667 1 Jun 5 4 1 Jul . 5 1 Aug . 4.6666666667 1 Sep . 4.8888888889 1 Oct . 4.8518518519 1 Nov . 4.8024691358 1 Dec . 4.8477366255 2 Jan 5 . 2 Feb 1 5 2 Mar 4 3 2 Apr 3 3.3333333333 2 May 4 2.6666666667 2 Jun 6 3.6666666667 2 Jul . 4.3333333333 2 Aug . 4.7777777778 2 Sep . 5.037037037 2 Oct . 4.7160493827 2 Nov . 4.8436213992 2 Dec . 4.865569273
Try this and replace as you like.
data have;
input ID Month $ Qty;
datalines;
1 Jan 2
1 Feb 3
1 Mar 2
1 Apr 6
1 May 4
1 Jun 5
1 Jul .
1 Aug .
1 Sep .
1 Oct .
1 Nov .
1 Dec .
2 Jan 5
2 Feb 1
2 Mar 4
2 Apr 3
2 May 4
2 Jun 6
2 Jul .
2 Aug .
2 Sep .
2 Oct .
2 Nov .
2 Dec .
;
data want;
array lag[0:2] _temporary_;
call missing(of lag[*]);
do _N_ = 1 by 1 until (last.id);
set have;
by id;
output;
lag[mod(_N_, 3)] = coalesce(Qty, avg);
avg = mean(of lag[*]);
end;
run;
Result:
ID Month Qty avg 1 Jan 2 . 1 Feb 3 2 1 Mar 2 2.5 1 Apr 6 2.3333333333 1 May 4 3.6666666667 1 Jun 5 4 1 Jul . 5 1 Aug . 4.6666666667 1 Sep . 4.8888888889 1 Oct . 4.8518518519 1 Nov . 4.8024691358 1 Dec . 4.8477366255 2 Jan 5 . 2 Feb 1 5 2 Mar 4 3 2 Apr 3 3.3333333333 2 May 4 2.6666666667 2 Jun 6 3.6666666667 2 Jul . 4.3333333333 2 Aug . 4.7777777778 2 Sep . 5.037037037 2 Oct . 4.7160493827 2 Nov . 4.8436213992 2 Dec . 4.865569273
Depending on your real data this discussion might provide all the answers you need.
It's finally time to hack! Remember to visit the SAS Hacker's Hub regularly for news and updates.
Learn how use the CAT functions in SAS to join values from multiple variables into a single value.
Find more tutorials on the SAS Users YouTube channel.
Ready to level-up your skills? Choose your own adventure.