How do I create a boxplot to compare the population Change among the regions (Northeast, Midwest, South, and West) with US Census Bureau definition to create regions: http://en.wikipedia.org/wiki/List_of_regions_of_the_United_States.
Then, how do I create a bar chart to display what percentage of the top 100 cities each region has?
Here is what I have so far:
data Cities;
infile datalines firstobs=2 dlm='09'x dsd truncover;
input
rank2012
city :$30.
state :$30.
estimate2012 :comma12.
census2012 :comma12.
change :percent6.
;
format change percent7.2;
datalines;
Rank2012 City State Estimate2012 Census2010 Change
1 New York New York 8,336,697 8,175,133 1.98%
2 Los Angeles California 3,857,799 3,792,621 1.72%
3 Chicago Illinois 2,714,856 2,695,598 0.71%
4 Houston Texas 2,160,821 2,100,263 2.88%
5 Philadelphia Pennsylvania 1,547,607 1,526,006 1.42%
6 Phoenix Arizona 1,488,750 1,445,632 2.98%
7 San Antonio Texas 1,382,951 1,327,407 4.18%
8 San Diego California 1,338,348 1,307,402 2.37%
9 Dallas Texas 1,241,162 1,197,816 3.62%
10 San Jose California 982,765 945,942 3.89%
11 Austin Texas 842,592 790,390 6.60%
12 Jacksonville Florida 836,507 821,784 1.79%
13 Indianapolis Indiana 834,852 820,445 1.76%
14 San Francisco California 825,863 805,235 2.56%
15 Columbus Ohio 809,798 787,033 2.89%
16 Fort Worth Texas 777,992 741,206 4.96%
17 Charlotte North Carolina 775,202 731,424 5.99%
18 Detroit Michigan 701,475 713,777 (1.72%)
19 El Paso Texas 672,538 649,121 3.61%
20 Memphis Tennessee 655,155 646,889 1.28%
21 Boston Massachusetts 636,479 617,594 3.06%
22 Seattle Washington 634,535 608,660 4.25%
23 Denver Colorado 634,265 600,158 5.68%
24 Washington District of Columbia 632,323 601,723 5.09%
25 Nashville Tennessee 624,496 601,222 3.87%
26 Baltimore Maryland 621,342 620,961 0.06%
27 Louisville Kentucky 605,110 597,337 1.30%
28 Portland Oregon 603,106 583,776 3.31%
29 Oklahoma City Oklahoma 599,199 579,999 3.31%
30 Milwaukee Wisconsin 598,916 594,833 0.69%
31 Las Vegas Nevada 596,424 583,756 2.17%
32 Albuquerque New Mexico 555,417 545,852 1.75%
33 Tucson Arizona 524,295 520,116 0.80%
34 Fresno California 505,882 494,665 2.27%
35 Sacramento California 475,516 466,488 1.94%
36 Long Beach California 467,892 462,257 1.22%
37 Kansas City Missouri 464,310 459,787 0.98%
38 Mesa Arizona 452,084 439,041 2.97%
39 Virginia Beach Virginia 447,021 437,994 2.06%
40 Atlanta Georgia 443,775 420,003 5.66%
41 Colorado Springs Colorado 431,834 416,427 3.70%
42 Raleigh North Carolina 423,179 403,892 4.78%
43 Omaha Nebraska 421,570 408,958 3.08%
44 Miami Florida 413,892 399,457 3.61%
45 Oakland California 400,740 390,724 2.56%
46 Tulsa Oklahoma 393,987 391,906 0.53%
47 Minneapolis Minnesota 392,880 382,578 2.69%
48 Cleveland Ohio 390,928 396,815 (1.48%)
49 Wichita Kansas 385,577 382,368 0.84%
50 Arlington Texas 375,600 365,438 2.78%
51 New Orleans Louisiana 369,250 343,829 7.39%
52 Bakersfield California 358,597 347,483 3.20%
53 Tampa Florida 347,645 335,709 3.56%
54 Honolulu Hawaii 345,610 337,256 2.48%
55 Anaheim California 343,248 336,265 2.08%
56 Aurora Colorado 339,030 325,078 4.29%
57 Santa Ana California 330,920 324,528 1.97%
58 St. Louis Missouri 318,172 319,294 (0.35%)
59 Riverside California 313,673 303,871 3.23%
60 Corpus Christi Texas 312,195 305,215 2.29%
61 Pittsburgh Pennsylvania 306,211 305,704 0.17%
62 Lexington Kentucky 310,573 295,803 4.99%
63 Anchorage Alaska 298,610 291,826 2.32%
64 Stockton California 297,984 291,707 2.15%
65 Cincinnati Ohio 296,550 296,943 (0.13%)
66 Saint Paul Minnesota 290,770 285,068 2.00%
67 Toledo Ohio 284,012 287,208 (1.11%)
68 Newark New Jersey 277,727 277,140 0.21%
69 Greensboro North Carolina 277,080 269,666 2.75%
70 Plano Texas 272,068 259,841 4.71%
71 Henderson Nevada 265,679 257,729 3.08%
72 Lincoln Nebraska 265,404 258,379 2.72%
73 Buffalo New York 259,384 261,310 (0.74%)
74 Fort Wayne Indiana 254,555 253,691 0.34%
75 Jersey City New Jersey 254,441 247,597 2.76%
76 Chula Vista California 252,422 243,916 3.49%
77 Orlando Florida 249,562 238,300 4.73%
78 St. Petersburg Florida 246,541 244,769 0.72%
79 Norfolk Virginia 245,782 242,803 1.23%
80 Chandler Arizona 245,628 236,123 4.03%
81 Laredo Texas 244,731 236,091 3.66%
82 Madison Wisconsin 240,323 233,209 3.05%
83 Durham North Carolina 239,358 228,330 4.83%
84 Lubbock Texas 236,065 229,573 2.83%
85 Winston–Salem North Carolina 234,349 229,617 2.06%
86 Garland Texas 233,564 226,876 2.95%
87 Glendale Arizona 232,143 226,721 2.39%
88 Hialeah Florida 231,941 224,669 3.24%
89 Reno Nevada 231,027 225,221 2.58%
90 Baton Rouge Louisiana 230,058 229,493 0.25%
91 Irvine California 229,985 212,375 8.29%
92 Chesapeake Virginia 228,417 222,209 2.79%
93 Irving Texas 225,427 216,290 4.22%
94 Scottsdale Arizona 223,514 217,385 2.82%
95 North Las Vegas Nevada 223,491 216,961 3.01%
96 Fremont California 221,986 214,089 3.69%
97 Gilbert Arizona 221,140 208,453 6.09%
98 San Bernardino California 213,295 209,924 1.61%
99 Boise Idaho 212,303 205,671 3.22%
100 Birmingham Alabama 212,038 212,237 (0.09%)
;
Your code is not formatted.
Your code doesn't run.
Your expected output isn't clear.
Please try harder 🙂
Good news: We've extended SAS Hackathon registration until Sept. 12, so you still have time to be part of our biggest event yet – our five-year anniversary!
Learn how use the CAT functions in SAS to join values from multiple variables into a single value.
Find more tutorials on the SAS Users YouTube channel.
Ready to level-up your skills? Choose your own adventure.