BookmarkSubscribeRSS Feed
🔒 This topic is solved and locked. Need further help from the community? Please sign in and ask a new question.
HN2001
Obsidian | Level 7

I have a dataset that looks like that following.  I am trying to find the best way to calculate the increase across days (DIFDay2-Day1, DIFDay3-Day2, DIFDay4-Day3)  My data going forward will have more days included so I'm hoping I don't have to list out each day.  Would an array be best here?

Group Day1 Day2 Day3 Day4 DIFDay2 - Day1 DIFDay3 - Day2 DIFDay4 - Day3
G1 2639 2639 2645 2671      
G2 3079 3503 3554 3620      
G3 285 291 358 379      
G4 9434 9510 9570 9690      
G5 13182 13525 13548 13902      
1 ACCEPTED SOLUTION

Accepted Solutions
SASJedi
SAS Super FREQ

Here's a good start:

data have;
input Group:$2	Day1	Day2	Day3	Day4;
datalines;
G1	2639	2639	2645	2671
G2	3079	3503	3554	3620
G3	285	291	358	379
G4	9434	9510	9570	9690
G5	13182	13525	13548	13902
;

proc sql noprint;
select count(*) into :dim
   from dictionary.columns 
   where libname="WORK" and memname="HAVE"
     and name like "Day%"
;

data want;
  set have;
  array Day[*] Day:;
  array DiffDay[&dim];
  do i=2 to dim(DiffDay);
     DiffDay[i]=Day[i]-Day[i-1];
  end;
  drop i DiffDay1;
run;

Result:

Group Day1 Day2 Day3 Day4 DiffDay2 DiffDay3 DiffDay4
1 2639 2639 2645 2671 0 6 26
2 3079 3503 3554 3620 424 51 66
3 285 291 358 379 6 67 21
4 9434 9510 9570 9690 76 60 120
5 13182 13525 13548 13902 343 23 354
Check out my Jedi SAS Tricks for SAS Users

View solution in original post

3 REPLIES 3
SASJedi
SAS Super FREQ

Here's a good start:

data have;
input Group:$2	Day1	Day2	Day3	Day4;
datalines;
G1	2639	2639	2645	2671
G2	3079	3503	3554	3620
G3	285	291	358	379
G4	9434	9510	9570	9690
G5	13182	13525	13548	13902
;

proc sql noprint;
select count(*) into :dim
   from dictionary.columns 
   where libname="WORK" and memname="HAVE"
     and name like "Day%"
;

data want;
  set have;
  array Day[*] Day:;
  array DiffDay[&dim];
  do i=2 to dim(DiffDay);
     DiffDay[i]=Day[i]-Day[i-1];
  end;
  drop i DiffDay1;
run;

Result:

Group Day1 Day2 Day3 Day4 DiffDay2 DiffDay3 DiffDay4
1 2639 2639 2645 2671 0 6 26
2 3079 3503 3554 3620 424 51 66
3 285 291 358 379 6 67 21
4 9434 9510 9570 9690 76 60 120
5 13182 13525 13548 13902 343 23 354
Check out my Jedi SAS Tricks for SAS Users
HN2001
Obsidian | Level 7
Thank you very much!
data_null__
Jade | Level 19

I'm on a PROC SCORE kick.  You need a custom SCORE data set like this.

Capture.PNG

Which you can generate with iterative DO.

data have;
   infile cards expandtabs;
   input Group:$2. Day1-Day4;
   datalines;
G1	2639	2639	2645	2671
G2	3079	3503	3554	3620
G3	285	291	358	379
G4	9434	9510	9570	9690
G5	13182	13525	13548	13902
;;;;
   run;
data score;
   if 0 then set have(keep=Day:);
   array v[*] _numeric_;
   retain _TYPE_ 'SCORE';
   length _name_ $32;
   do i = 1 to dim(v);
      call missing(of v[*]);
      v[i]=-1; 
      do j = i+1 to dim(v);
         _name_ = catx('_',vname(v[i]),vname(v[j]));
         v[j] = 1;
         output;
         v[j] = .;
         end;
      end;
   drop i j;
   stop;
   run;
proc print;
   run;
proc score data=have score=score out=diffs;
   id group day:;
   var day:;
   run;
proc print;
   run;


And SCORE using PROC SCORE.

Capture.PNG

SAS Innovate 2025: Save the Date

 SAS Innovate 2025 is scheduled for May 6-9 in Orlando, FL. Sign up to be first to learn about the agenda and registration!

Save the date!

How to Concatenate Values

Learn how use the CAT functions in SAS to join values from multiple variables into a single value.

Find more tutorials on the SAS Users YouTube channel.

SAS Training: Just a Click Away

 Ready to level-up your skills? Choose your own adventure.

Browse our catalog!

Discussion stats
  • 3 replies
  • 532 views
  • 7 likes
  • 3 in conversation