- Mark as New
- Bookmark
- Subscribe
- Mute
- RSS Feed
- Permalink
- Report Inappropriate Content
This code:
proc plm restore=SomeLib.ModelParams; score data=SomeLib.TestData out=SomeLib.Predictions; run;
produces the dataset SomeLib.Predictions which contains the predictions of the model against the dataset SomeLib.TestData.
Just wondering, can I use proc plm to obtain performance metrics such as:
Root MSE
Dependent Mean
R-Square
Adj R-Sq
AIC
AICC
SBC
ASE
Accepted Solutions
- Mark as New
- Bookmark
- Subscribe
- Mute
- RSS Feed
- Permalink
- Report Inappropriate Content
Not really. Those statistics have to do with evaluating the suitability of the model fit, so they come out of the regression procedures. They don't change after the model is fit. In contrast, PROC PLM is intended for for post-fitting analyses (after you have settled on a model) such as scoring new data or testing for treatment differences.
PROC PLM does provide some model statistics if you use the SHOW statement. For example, you can submit SHOW FITSTATS, which provides the MSE and ErrorDF statistics. So you can get figure out the RMSE. But I don't see an easy way to get AIC, BIC, etc
- Mark as New
- Bookmark
- Subscribe
- Mute
- RSS Feed
- Permalink
- Report Inappropriate Content
Not really. Those statistics have to do with evaluating the suitability of the model fit, so they come out of the regression procedures. They don't change after the model is fit. In contrast, PROC PLM is intended for for post-fitting analyses (after you have settled on a model) such as scoring new data or testing for treatment differences.
PROC PLM does provide some model statistics if you use the SHOW statement. For example, you can submit SHOW FITSTATS, which provides the MSE and ErrorDF statistics. So you can get figure out the RMSE. But I don't see an easy way to get AIC, BIC, etc
- Mark as New
- Bookmark
- Subscribe
- Mute
- RSS Feed
- Permalink
- Report Inappropriate Content