Is there a straighforward way to convert
RowName | Prm1 | Prm2 | Prm3 | Prm4 | Prm5 | Prm6 |
Prm1 | 1 | -0.1487 | -0.0531 | -0.11 | -0.2161 | -0.1575 |
Prm2 | -0.1487 | 1 | 0.0079 | 0.0163 | 0.0321 | 0.0234 |
Prm3 | -0.0531 | 0.0079 | 1 | 0.0058 | 0.0115 | 0.0084 |
Prm4 | -0.11 | 0.0163 | 0.0058 | 1 | 0.0238 | 0.0173 |
Prm5 | -0.2161 | 0.0321 | 0.0115 | 0.0238 | 1 | 0.034 |
Prm6 | -0.1575 | 0.0234 | 0.0084 | 0.0173 | 0.034 | 1 |
to
Field1 | Field2 | Field3 |
Prm1 | Prm1 | 1 |
Prm1 | Prm2 | -0.1487 |
Prm1 | Prm3 | -0.0531 |
Prm1 | Prm4 | -0.11 |
Prm1 | Prm5 | -0.2161 |
Prm1 | Prm6 | -0.1575 |
Prm2 | Prm2 | 1 |
Prm2 | Prm3 | 0.0079 |
Prm2 | Prm4 | 0.0163 |
Prm2 | Prm5 | 0.0321 |
Prm2 | Prm6 | 0.0234 |
Prm3 | Prm3 | 1 |
Prm3 | Prm4 | 0.0058 |
Prm3 | Prm5 | 0.0115 |
Prm3 | Prm6 | 0.0084 |
Prm4 | Prm4 | 1 |
Prm4 | Prm5 | 0.0238 |
Prm4 | Prm6 | 0.0173 |
Prm5 | Prm5 | 1 |
Prm5 | Prm6 | 0.034 |
Prm6 | Prm6 | 1 |
Another way:
data test;
input RowName $ Prm1 Prm2 Prm3 Prm4 Prm5 Prm6;
datalines;
Prm1 1 -0.1487 -0.0531 -0.11 -0.2161 -0.1575
Prm2 -0.1487 1 0.0079 0.0163 0.0321 0.0234
Prm3 -0.0531 0.0079 1 0.0058 0.0115 0.0084
Prm4 -0.11 0.0163 0.0058 1 0.0238 0.0173
Prm5 -0.2161 0.0321 0.0115 0.0238 1 0.034
Prm6 -0.1575 0.0234 0.0084 0.0173 0.034 1
;
proc transpose data=test out=list(where=(Rowname<=_name_));
by rowname;
var prm: ;
run;
One way:
data want (keep=field1 field2 field3);
set have;
length field1 field2 $ 32.;
array p Prm1-Prm6;
do i=1 to dim(p);
Field1 = RowName;
Field2 = vname(p[i]);
Field3 = p[i];
output;
end;
run;
Thanks ballardw
This code creates 36 rows whereas I want to exclude multiples of the same combination so..
prm1 prm2
prm1 prm3
prm1 prm4
prm1 prm5
prm1 prm6
prm2 prm2 (i.e. exclude prm2 prm1 as is already included above)
prm2 prm3
...
...
Is there a way to adjust your code to allow for this?
Updated to answer the implied upper triangular requirement.
data prm;
infile cards expandtabs;
input RowName $ Prm1 Prm2 Prm3 Prm4 Prm5 Prm6;
cards;
Prm1 1 -0.1487 -0.0531 -0.11 -0.2161 -0.1575
Prm2 -0.1487 1 0.0079 0.0163 0.0321 0.0234
Prm3 -0.0531 0.0079 1 0.0058 0.0115 0.0084
Prm4 -0.11 0.0163 0.0058 1 0.0238 0.0173
Prm5 -0.2161 0.0321 0.0115 0.0238 1 0.034
Prm6 -0.1575 0.0234 0.0084 0.0173 0.034 1
;;;;
run;
proc transpose data=prm name=ColName out=prm2(where=(rowname LE colname));
by rowname notsorted;
run;
Another way:
data test;
input RowName $ Prm1 Prm2 Prm3 Prm4 Prm5 Prm6;
datalines;
Prm1 1 -0.1487 -0.0531 -0.11 -0.2161 -0.1575
Prm2 -0.1487 1 0.0079 0.0163 0.0321 0.0234
Prm3 -0.0531 0.0079 1 0.0058 0.0115 0.0084
Prm4 -0.11 0.0163 0.0058 1 0.0238 0.0173
Prm5 -0.2161 0.0321 0.0115 0.0238 1 0.034
Prm6 -0.1575 0.0234 0.0084 0.0173 0.034 1
;
proc transpose data=test out=list(where=(Rowname<=_name_));
by rowname;
var prm: ;
run;
data test; infile datalines expandtabs truncover; input RowName $ Prm1 Prm2 Prm3 Prm4 Prm5 Prm6; datalines; Prm1 1 -0.1487 -0.0531 -0.11 -0.2161 -0.1575 Prm2 -0.1487 1 0.0079 0.0163 0.0321 0.0234 Prm3 -0.0531 0.0079 1 0.0058 0.0115 0.0084 Prm4 -0.11 0.0163 0.0058 1 0.0238 0.0173 Prm5 -0.2161 0.0321 0.0115 0.0238 1 0.034 Prm6 -0.1575 0.0234 0.0084 0.0173 0.034 1 ; run; proc iml; use test; read all var _num_ into x; read all var{RowName}; close; r=repeat(RowName,1,ncol(x)); c=repeat(t(RowName),nrow(x),1); idx=loc(row(x)<=col(x)); field1=r[idx]; field2=c[idx]; field3=x[idx]; create want var{field1 field2 field3}; append; close; quit;
Join us for SAS Innovate 2025, our biggest and most exciting global event of the year, in Orlando, FL, from May 6-9. Sign up by March 14 for just $795.
Learn the difference between classical and Bayesian statistical approaches and see a few PROC examples to perform Bayesian analysis in this video.
Find more tutorials on the SAS Users YouTube channel.
Ready to level-up your skills? Choose your own adventure.