Does Proc Ginside require that the vertices of a custom polygon be ordered? If so, what is the appropriate order? Is there an easy way to accomplish this?
Thanks,
Gene
@genemroz wrote:
Does Proc Ginside require that the vertices of a custom polygon be ordered? If so, what is the appropriate order? Is there an easy way to accomplish this?
Thanks,
Gene
Pretty much. To make sure a polygon is usable the last point on the perimeter must have the same coordinates as the first.
How to accomplish may depend. Can you provide more information? What sort of "custom polygon" do you envision?
Basically a data set with the coordinates and polygon id information .
Ginside may not return your expected values if your custom polygon overlaps others. I seem to remember some difficulty with that but it has been a long time since that project.
@genemroz wrote:
Does Proc Ginside require that the vertices of a custom polygon be ordered? If so, what is the appropriate order? Is there an easy way to accomplish this?
Thanks,
Gene
Pretty much. To make sure a polygon is usable the last point on the perimeter must have the same coordinates as the first.
How to accomplish may depend. Can you provide more information? What sort of "custom polygon" do you envision?
Basically a data set with the coordinates and polygon id information .
Ginside may not return your expected values if your custom polygon overlaps others. I seem to remember some difficulty with that but it has been a long time since that project.
Thanks for the prompt response. I was looking for confirmation for what I already suspected to be the case. I think I can figure it out from here....
Gene
Yes. the sequence/order of scatter points to plot a polygon is important.
Make sure you could get a right polygon by ploting these points one by one.
Here is an example:
/*产生样本数据*/
data have;
pi=constant('PI');
call streaminit(123);
do i=1 to 500;
x=40+30*ranuni(2); y=40+40*ranuni(2); output;
end;
/*--Add data all over--*/
do i=1 to 100;
x=400*ranuni(2); y=400*ranuni(2); output;
end;
/*--Add data in the middle fan--*/
do i=1 to 5000;
x=40+360*ranuni(2);
y=x+(x-50)*2*tan(pi/4 *ranuni(2) -pi/8);
y=ifn(y>400 or y<0, ., y);
output;
end;
x=70;y=84;output;
x=70;y=56;output;
keep x y;
run;
/*画图*/
/*--Generate grid and point data--*/
data map;
infile cards expandtabs;
input n id $ x y;
cards;
1 E_L 180 0
2 E_L 180 70
3 E_L 400 70
4 E_L 400 0
40 E_U 0 180
41 E_U 70 180
42 E_U 70 400
43 E_U 0 400
8 D_L 240 70
9 D_L 240 180
10 D_L 400 180
11 D_L 400 70
35 D_U 0 70
36 D_U 58.3 70
37 D_U 70 84
38 D_U 70 180
39 D_U 0 180
5 C_L 130 0
6 C_L 180 70
7 C_L 180 0
32 C_U 70 180
33 C_U 290 400
34 C_U 70 400
12 B_L 70 0
13 B_L 70 56
14 B_L 400 320
15 B_L 400 180
16 B_L 240 180
17 B_L 240 70
18 B_L 180 70
19 B_L 130 0
28 B_U 70 84
29 B_U 333 400
30 B_U 290 400
31 B_U 70 180
20 A 0 0
21 A 0 70
22 A 58.3 70
23 A 333 400
24 A 400 400
25 A 400 320
26 A 70 56
27 A 70 0
;
run;
data map;
set map;
if n in (23 29) then x=400/1.2 ;
if n in (22 36) then x=70/1.2 ;
drop n;
run;
/*判断点在哪个区域*/
proc ginside data=have map=map out=id INCLUDEBORDER;
id id ;
run;
data id;
set id;
id=scan(id,1,'_');
run;
/*特殊情况判断
data id;
set id;
if not missing(y) and not missing(x) then do;
if (abs(y-x)/x*100)<=20 then id='A';
end;
run;
*/
proc freq data=id ;
table id/out=zone;
run;
%let A=0.00;
%let B=0.00;
%let C=0.00;
%let D=0.00;
%let E=0.00;
%let count_A=0;
%let count_B=0;
%let count_C=0;
%let count_D=0;
%let count_E=0;
data _null_;
set zone;
if not missing(id) then do;
call symputx(id,put(PERCENT,8.2));
call symputx(cats('count_',id),COUNT);
end;
run;
data Grid;
/*--Zone A--*/
id2=11; rfbg2=70; sbg2=0; output;
id2=11; rfbg2=70; sbg2=56; output;
id2=12; rfbg2=58.3;sbg2=70; output;
id2=12; rfbg2=0; sbg2=70; output;
id2=13; rfbg2=70; sbg2=84; output;
id2=13; rfbg2=70; sbg2=180; output;
id2=13; rfbg2=0; sbg2=180; output;
/*--Zone E - Y--*/
id2=3; rfbg2=70; sbg2=180; output;
id2=3; rfbg2=70; sbg2=400; output;
id2=3; rfbg2=0; sbg2=400; output;
/*--Zone E - X--*/
id2=4; rfbg2=180; sbg2=0; output;
id2=4; rfbg2=180; sbg2=70; output;
id2=4; rfbg2=400; sbg2=70; output;
/*--Zone D - X--*/
id2=5; rfbg2=240; sbg2=70; output;
id2=5; rfbg2=240; sbg2=180; output;
id2=5; rfbg2=400; sbg2=180; output;
/*--Zone C - Low--*/
id2=6; rfbg2=130; sbg2=0; output;
id2=6; rfbg2=180; sbg2=70; output;
/*--Zone C - High--*/
id2=7; rfbg2=70; sbg2=180; output;
id2=7; rfbg2=290; sbg2=400; output;
/*--Zone B - High--*/
id2=8; rfbg2=58.3; sbg2=70; output;
id2=8; rfbg2=333.3; sbg2=400; output;
/*--Zone B - Low--*/
id2=9; rfbg2=70; sbg2=56; output;
id2=9; rfbg2=400; sbg2=320; output;
run;
data label;
length label $ 40;
xl=20; yl=20; label='A'; output;
xl=20; yl=120; label='D'; output;
xl=20; yl=300; label='E'; output;
xl=100; yl=20; label='B'; output;
xl=160; yl=20; label='C'; output;
xl=100; yl=160; label='B'; output;
xl=320; yl=20; label="E(&count_E.,&E.%)"; output;
xl=320; yl=120; label="D(&count_D.,&D.%)"; output;
xl=320; yl=200; label="B(&count_B.,&B.%)" ; output;
xl=340; yl=340; label="A(&count_A.,&A.%)" ; output;
xl=120; yl=320; label="C(&count_C.,&C.%)" ; output;
run;
data plot;
set Grid id label;
run;
/*--Attributes Map for zones--*/
data attrmap;
length id $1 value $1 markercolor $10;
id='A'; value='A'; markercolor='cx00afdf'; linecolor='cx00afdf'; output;
id='A'; value='B'; markercolor='cx00ef7f'; linecolor='cx00ef7f'; output;
id='A'; value='C'; markercolor='gray'; linecolor='gray'; output;
id='A'; value='D'; markercolor='pink'; linecolor='pink'; output;
id='A'; value='E'; markercolor='red'; linecolor='red'; output;
run;
/*--Draw the grid--*/
ods rtf file="c:\temp\clark.rtf" style=htmlblue dpi=300;
ods graphics / reset antialiasmax=5700 outputfmt=png;
proc sgplot data=plot noautolegend aspect=1 dattrmap=attrmap;
scatter x=x y=y / attrid=A group=id markerattrs=(symbol=circlefilled size=4 ) ;
scatter x=xl y=yl / markerchar=label markercharattrs=(size=12) ;
series x=rfbg2 y=sbg2 / group=id2 lineattrs=(color=gray ) nomissinggroup;
xaxis values=(0 to 400 by 50) offsetmin=0 offsetmax=0 label='Reference Blood Glucose';
yaxis values=(0 to 400 by 50) offsetmin=0 offsetmax=0 label='Sensor Blood Glucose';
run;
ods rtf close;
Registration is now open for SAS Innovate 2025 , our biggest and most exciting global event of the year! Join us in Orlando, FL, May 6-9.
Sign up by Dec. 31 to get the 2024 rate of just $495.
Register now!
Learn the difference between classical and Bayesian statistical approaches and see a few PROC examples to perform Bayesian analysis in this video.
Find more tutorials on the SAS Users YouTube channel.
Ready to level-up your skills? Choose your own adventure.