- Mark as New
- Bookmark
- Subscribe
- Mute
- RSS Feed
- Permalink
- Report Inappropriate Content
Hi Everyone,
I need your help to be able to use the appropriate statistical procedure for my dataset below
Here is the detail of the data.
sub_id = subjects, measurement is taken on subject at different time point.
position: where measurement is taken (anterior or posterior)
time_in_seconds: time to apply treatment
resistant:
force: force of treatment application
The y variable is whether there is a block after treatment has been applied i.e. y =1 or there is a gap y= 0 and it also contains missing data.
Question:
I want to know how Time+Force+resistance affect the outcome i.e y =gap/block
Sub_ID | Position | Time_in_Seconds | Resistance_ ohms | Force_N | y_variable |
1 | Ant | 3.82 | -23 | 37 | 1 |
1 | Ant | 4.94 | -24 | 4.4 | 0 |
1 | Ant | 3.49 | -41.5 | 15.8 | 1 |
1 | Ant | 3.07 | -39.5 | 21.15 | 1 |
1 | Post | 3.43 | -39 | 29 | 1 |
1 | Post | 3.53 | -45.5 | 14.15 | 1 |
1 | Post | 4.44 | -46 | 9.55 | 1 |
1 | Post | 3.37 | -19 | 12.9 | 1 |
1 | Ant | 3.35 | -46.5 | 7.2 | 1 |
1 | Ant | 3.19 | -43 | 14.2 | 1 |
1 | Ant | 3.61 | -41 | 24.55 | 1 |
1 | Ant | 4.24 | -48 | 23.15 | 1 |
1 | Post | 2.09 | -33 | 27.25 | 1 |
1 | Post | 2.83 | -32 | 21.2 | 1 |
1 | Post | 3.26 | -28 | 29.7 | 0 |
1 | Post | 3.34 | -41.5 | 10.15 | 1 |
2 | Ant | 5.29 | -30 | 10.9 | 1 |
2 | Ant | 4.22 | -29 | 11.3 | 1 |
2 | Ant | 2.40 | -15 | 10.2 | 1 |
2 | Ant | 3.32 | -18.5 | 8.75 | 1 |
2 | Post | 1.85 | -27 | 9.3 | 1 |
2 | Post | 4.31 | -37 | 8.75 | 1 |
2 | Post | 1.82 | -29.5 | 13.95 | 1 |
2 | Post | 3.98 | -24.5 | 9.8 | 0 |
2 | Ant | 4.06 | -39.5 | 21.45 | 1 |
2 | Ant | 2.90 | -35.5 | 16.5 | 1 |
2 | Ant | 3.23 | -35.5 | 18.2 | 1 |
2 | Ant | 4.24 | -31 | 14.3 | 1 |
2 | Post | 2.45 | -31 | 9.6 | 1 |
2 | Post | 3.51 | -20 | 6 | 1 |
2 | Post | 4.27 | -17.5 | 8.4 | 1 |
2 | Post | 2.67 | -25.5 | 25 | 0 |
3 | Ant | 3.065092996 | -40 | 10.7 | 1 |
3 | Ant | 3.74 | -38 | 17.8 | . |
3 | Ant | 3.61 | -27 | 10.1 | 0 |
3 | Ant | 2.08 | -26.5 | 6.45 | . |
3 | Post | 2.12 | -35 | 20.4 | 1 |
3 | Post | 3.244 | -39 | 27.5 | 1 |
3 | Post | 4.02 | -42 | 19.9 | 1 |
3 | Post | 1.94 | -19 | 16.6 | 1 |
3 | Ant | 4.37 | -14 | 4.2 | 0 |
3 | Ant | 4.68 | -33 | 6.9 | 0 |
3 | Ant | 3.35 | -30.5 | 8.65 | 1 |
3 | Ant | 1.72 | -33 | 14.1 | 1 |
3 | Post | 0.81 | -27 | 12.2 | 1 |
3 | Post | 3.90 | -26 | 18.35 | 1 |
3 | Post | 4.19 | -29 | 9.4 | 1 |
3 | Post | 4.46 | -19 | 10.2 | 1 |
4 | Ant | 2.89 | -42 | 11.3 | 1 |
4 | Ant | 2.20 | -28 | 12.45 | 1 |
4 | Ant | 2.97 | -31 | 19.5 | 1 |
4 | Ant | 2.06 | -31 | 22.3 | 1 |
4 | Post | 3.35 | -44.5 | 32.9 | 1 |
4 | Post | 2.10 | -35 | 15.3 | 1 |
4 | Post | 3.42 | -35 | 8.35 | 1 |
4 | Post | 4.16 | -33 | 20.9 | 1 |
4 | Ant | 4.06 | -15.5 | 6 | 1 |
4 | Ant | 5.00 | -25 | 21.5 | 1 |
4 | Ant | 4.13 | -33.5 | 24.25 | 1 |
4 | Ant | 5.56 | -34 | 16.7 | 1 |
4 | Post | 4.14 | -35 | 31.75 | 1 |
4 | Post | 4.49 | -33.5 | 25.4 | 1 |
4 | Post | 4.17 | -29 | 41.9 | 1 |
4 | Post | 3.85 | -28 | 28.8 | 1 |
5 | Ant | 2.67 | -23 | 28.2 | 0 |
5 | Ant | 1.68 | -23 | 10.3 | 1 |
5 | Ant | 2.07 | -19.5 | 9.85 | 1 |
5 | Ant | 1.06 | -25 | 12.7 | 1 |
5 | Post | 5.02 | -31 | 10.4 | 0 |
5 | Post | 2.53 | -23 | 11.7 | 1 |
5 | Post | 3.40 | -71.5 | 27.15 | 1 |
5 | Post | 4.78 | -41.5 | 31.85 | 1 |
5 | Ant | 2.15 | -42 | 15.95 | 1 |
5 | Ant | 2.89 | -26.5 | 16.9 | 1 |
5 | Ant | 2.25 | -33 | 9.8 | 1 |
5 | Ant | 2.76 | -28 | 12.1 | 0 |
5 | Post | 3.04 | -22 | 9 | 1 |
5 | Post | 4.45 | -37.5 | 9.25 | 1 |
5 | Post | 4.10 | -20.5 | 15.3 | 1 |
5 | Post | 4.41 | -31.5 | 18.05 | 1 |
6 | Ant | 1.61 | -26 | 18.7 | 1 |
6 | Ant | 1.68 | -26 | 7.4 | 0 |
6 | Ant | 3.93 | -29 | 7.4 | 0 |
6 | Ant | 4.45 | -21.5 | 9.15 | . |
6 | Post | 5.48 | -28 | 25.05 | 1 |
6 | Post | 4.11 | -48 | 30.7 | 1 |
6 | Post | 3.20 | -23 | 22.3 | 1 |
6 | Post | 2.77 | -28 | 15.3 | 1 |
6 | Ant | 2.34 | -22 | 10.95 | 1 |
6 | Ant | 2.25 | -30 | 6.2 | 1 |
6 | Ant | 4.16 | -24.5 | 6.6 | |
6 | Ant | 4.62 | -33 | 12 | 0 |
6 | Post | 2.32 | -31 | 16.65 | 1 |
6 | Post | 4.03 | -31 | 19 | 1 |
6 | Post | 3.43 | -17 | 12 | . |
6 | Post | 3.51 | -14 | 11.1 | 0 |
7 | Ant | 2.99 | -30 | 7.65 | 1 |
7 | Ant | 1.80517419 | -25 | 15.95 | 1 |
7 | Ant | 2.106053494 | -32 | 13.8 | 1 |
7 | Ant | 3.096114016 | -29 | 17.55 | 1 |
7 | Post | 3.167542074 | -24 | 11.45 | 1 |
7 | Post | 3.338268984 | -24 | 22.7 | 1 |
7 | Post | 2.659685183 | -32.5 | 21.95 | 1 |
7 | Post | 3.751749917 | -17 | 8.25 | 1 |
7 | Ant | 2.197529839 | -25 | 8.8 | 0 |
7 | Ant | 3.664137015 | -35 | 10.1 | 0 |
7 | Ant | 3.545702335 | -39 | 9.4 | 0 |
7 | Ant | 2.023625001 | -35 | 10.1 | 1 |
7 | Post | 2.372086883 | -33 | 24.25 | 1 |
7 | Post | 3.582104056 | -37.5 | 17.3 | 1 |
7 | Post | 3.45055168 | -38 | 12.6 | 1 |
7 | Post | 3.841677068 | -23 | 9.8 | 1 |
8 | Ant | 3.432008272 | -25 | 18.6 | 0 |
8 | Ant | 2.136605495 | -32.5 | 14.1 | 1 |
8 | Ant | 1.841190586 | -18 | 7 | 0 |
8 | Ant | 2.15865836 | -25.5 | 6.8 | 0 |
8 | Post | 3.359805409 | -30 | 15.5 | 1 |
8 | Post | 3.631259765 | -31 | 28 | 1 |
8 | Post | 4.674356585 | -32.5 | 20.9 | 1 |
8 | Post | 4.044977037 | -25 | 12.9 | 0 |
8 | Ant | 3.346860731 | -28 | 14.6 | 1 |
8 | Ant | 3.850582629 | -46 | 24.5 | 1 |
8 | Ant | 5.340021635 | -31.5 | 8.5 | 1 |
8 | Ant | 3.980653721 | -26 | 11.6 | 1 |
8 | Post | 3.704121331 | -26 | 14.8 | 1 |
8 | Post | 3.848852913 | -31.5 | 15.8 | 1 |
8 | Post | 4.939191479 | -18 | 9.8 | 1 |
8 | Post | 3.134066196 | -15 | 9.1 | 1 |
9 | Ant | 1.309024248 | -25 | 9 | 1 |
9 | Ant | 3.369404446 | -27 | 11.55 | 1 |
9 | Ant | 1.841284373 | -26 | 13.15 | 1 |
9 | Ant | 3.675231524 | -21 | 12.4 | 1 |
9 | Post | 3.06826061 | -22 | 24.2 | 1 |
9 | Post | 3.59966626 | -19 | 17.3 | 1 |
9 | Post | 4.466268907 | -16.5 | 15.7 | 1 |
9 | Post | 1.882204503 | -27 | 11.3 | . |
9 | Ant | 3.89896461 | -25 | 21.1 | 1 |
9 | Ant | 2.295202494 | -26 | 9 | 1 |
9 | Ant | 3.272687389 | -24.5 | 4.95 | 0 |
9 | Ant | 4.201883396 | -13 | 2.7 | 0 |
9 | Post | 4.374845784 | -25 | 10.8 | 0 |
9 | Post | 4.459715564 | -15.5 | 11.8 | 1 |
9 | Post | 3.227763303 | -19.5 | 21.05 | 0 |
9 | Post | 2.517233031 | -20.5 | 31.6 | 1 |
- Mark as New
- Bookmark
- Subscribe
- Mute
- RSS Feed
- Permalink
- Report Inappropriate Content
This may serve as a starting point for anyone wishing to tackle this question:
data have;
infile datalines truncover;
input ID Position $ Time Resistance Force y;
datalines;
1 Ant 3.82 -23 37 1
1 Ant 4.94 -24 4.4 0
1 Ant 3.49 -41.5 15.8 1
1 Ant 3.07 -39.5 21.15 1
1 Post 3.43 -39 29 1
1 Post 3.53 -45.5 14.15 1
1 Post 4.44 -46 9.55 1
1 Post 3.37 -19 12.9 1
1 Ant 3.35 -46.5 7.2 1
1 Ant 3.19 -43 14.2 1
1 Ant 3.61 -41 24.55 1
1 Ant 4.24 -48 23.15 1
1 Post 2.09 -33 27.25 1
1 Post 2.83 -32 21.2 1
1 Post 3.26 -28 29.7 0
1 Post 3.34 -41.5 10.15 1
2 Ant 5.29 -30 10.9 1
2 Ant 4.22 -29 11.3 1
2 Ant 2.40 -15 10.2 1
2 Ant 3.32 -18.5 8.75 1
2 Post 1.85 -27 9.3 1
2 Post 4.31 -37 8.75 1
2 Post 1.82 -29.5 13.95 1
2 Post 3.98 -24.5 9.8 0
2 Ant 4.06 -39.5 21.45 1
2 Ant 2.90 -35.5 16.5 1
2 Ant 3.23 -35.5 18.2 1
2 Ant 4.24 -31 14.3 1
2 Post 2.45 -31 9.6 1
2 Post 3.51 -20 6 1
2 Post 4.27 -17.5 8.4 1
2 Post 2.67 -25.5 25 0
3 Ant 3.065092996 -40 10.7 1
3 Ant 3.74 -38 17.8 .
3 Ant 3.61 -27 10.1 0
3 Ant 2.08 -26.5 6.45 .
3 Post 2.12 -35 20.4 1
3 Post 3.244 -39 27.5 1
3 Post 4.02 -42 19.9 1
3 Post 1.94 -19 16.6 1
3 Ant 4.37 -14 4.2 0
3 Ant 4.68 -33 6.9 0
3 Ant 3.35 -30.5 8.65 1
3 Ant 1.72 -33 14.1 1
3 Post 0.81 -27 12.2 1
3 Post 3.90 -26 18.35 1
3 Post 4.19 -29 9.4 1
3 Post 4.46 -19 10.2 1
4 Ant 2.89 -42 11.3 1
4 Ant 2.20 -28 12.45 1
4 Ant 2.97 -31 19.5 1
4 Ant 2.06 -31 22.3 1
4 Post 3.35 -44.5 32.9 1
4 Post 2.10 -35 15.3 1
4 Post 3.42 -35 8.35 1
4 Post 4.16 -33 20.9 1
4 Ant 4.06 -15.5 6 1
4 Ant 5.00 -25 21.5 1
4 Ant 4.13 -33.5 24.25 1
4 Ant 5.56 -34 16.7 1
4 Post 4.14 -35 31.75 1
4 Post 4.49 -33.5 25.4 1
4 Post 4.17 -29 41.9 1
4 Post 3.85 -28 28.8 1
5 Ant 2.67 -23 28.2 0
5 Ant 1.68 -23 10.3 1
5 Ant 2.07 -19.5 9.85 1
5 Ant 1.06 -25 12.7 1
5 Post 5.02 -31 10.4 0
5 Post 2.53 -23 11.7 1
5 Post 3.40 -71.5 27.15 1
5 Post 4.78 -41.5 31.85 1
5 Ant 2.15 -42 15.95 1
5 Ant 2.89 -26.5 16.9 1
5 Ant 2.25 -33 9.8 1
5 Ant 2.76 -28 12.1 0
5 Post 3.04 -22 9 1
5 Post 4.45 -37.5 9.25 1
5 Post 4.10 -20.5 15.3 1
5 Post 4.41 -31.5 18.05 1
6 Ant 1.61 -26 18.7 1
6 Ant 1.68 -26 7.4 0
6 Ant 3.93 -29 7.4 0
6 Ant 4.45 -21.5 9.15 .
6 Post 5.48 -28 25.05 1
6 Post 4.11 -48 30.7 1
6 Post 3.20 -23 22.3 1
6 Post 2.77 -28 15.3 1
6 Ant 2.34 -22 10.95 1
6 Ant 2.25 -30 6.2 1
6 Ant 4.16 -24.5 6.6
6 Ant 4.62 -33 12 0
6 Post 2.32 -31 16.65 1
6 Post 4.03 -31 19 1
6 Post 3.43 -17 12 .
6 Post 3.51 -14 11.1 0
7 Ant 2.99 -30 7.65 1
7 Ant 1.80517419 -25 15.95 1
7 Ant 2.106053494 -32 13.8 1
7 Ant 3.096114016 -29 17.55 1
7 Post 3.167542074 -24 11.45 1
7 Post 3.338268984 -24 22.7 1
7 Post 2.659685183 -32.5 21.95 1
7 Post 3.751749917 -17 8.25 1
7 Ant 2.197529839 -25 8.8 0
7 Ant 3.664137015 -35 10.1 0
7 Ant 3.545702335 -39 9.4 0
7 Ant 2.023625001 -35 10.1 1
7 Post 2.372086883 -33 24.25 1
7 Post 3.582104056 -37.5 17.3 1
7 Post 3.45055168 -38 12.6 1
7 Post 3.841677068 -23 9.8 1
8 Ant 3.432008272 -25 18.6 0
8 Ant 2.136605495 -32.5 14.1 1
8 Ant 1.841190586 -18 7 0
8 Ant 2.15865836 -25.5 6.8 0
8 Post 3.359805409 -30 15.5 1
8 Post 3.631259765 -31 28 1
8 Post 4.674356585 -32.5 20.9 1
8 Post 4.044977037 -25 12.9 0
8 Ant 3.346860731 -28 14.6 1
8 Ant 3.850582629 -46 24.5 1
8 Ant 5.340021635 -31.5 8.5 1
8 Ant 3.980653721 -26 11.6 1
8 Post 3.704121331 -26 14.8 1
8 Post 3.848852913 -31.5 15.8 1
8 Post 4.939191479 -18 9.8 1
8 Post 3.134066196 -15 9.1 1
9 Ant 1.309024248 -25 9 1
9 Ant 3.369404446 -27 11.55 1
9 Ant 1.841284373 -26 13.15 1
9 Ant 3.675231524 -21 12.4 1
9 Post 3.06826061 -22 24.2 1
9 Post 3.59966626 -19 17.3 1
9 Post 4.466268907 -16.5 15.7 1
9 Post 1.882204503 -27 11.3 .
9 Ant 3.89896461 -25 21.1 1
9 Ant 2.295202494 -26 9 1
9 Ant 3.272687389 -24.5 4.95 0
9 Ant 4.201883396 -13 2.7 0
9 Post 4.374845784 -25 10.8 0
9 Post 4.459715564 -15.5 11.8 1
9 Post 3.227763303 -19.5 21.05 0
9 Post 2.517233031 -20.5 31.6 1
;
proc sort data=have; by position id; run;
proc sgscatter data=have;
where resistance gt -50; /* remove outlier */
by position;
matrix force time resistance / group=y;
run;
- Mark as New
- Bookmark
- Subscribe
- Mute
- RSS Feed
- Permalink
- Report Inappropriate Content
I would start by performing a logistic regression. (PROC LOGISTIC)
Paige Miller
- Mark as New
- Bookmark
- Subscribe
- Mute
- RSS Feed
- Permalink
- Report Inappropriate Content
It is repeated measured model, therefore you need Mixed Model of Logistic.
@SteveDenham @lvm @StatDave could give you right sas code .
But you better to post it at Stat forum.
https://communities.sas.com/t5/Statistical-Procedures/bd-p/statistical_procedures
- Mark as New
- Bookmark
- Subscribe
- Mute
- RSS Feed
- Permalink
- Report Inappropriate Content