BookmarkSubscribeRSS Feed
thanoon
Calcite | Level 5

HI ALL

i need your help to correct this commands ( simulation of multivariate regression model).

regards\

&let N=1000;

proc iml;

/* specify the mean and covariance of the population */

Mean = {1, 2, 3 , 4, 5, 6, 7, 8, 9};

cov = {0.8838659 0.9738211 0.5075826 0.8869405 0.6893635 0.9432546 0.9287864 0.487664 0.7798851,

       0.9738211 0.8771385 0.5668343 0.6656078 0.8234433 0.9280248 0.7900982 0.1142881 0.8905852,

       0.5075826 0.5668343 0.5448972 0.2810451 0.9316785 0.6140648 0.8564316 0.6149666 0.4655727,

       0.8869405 0.6656078 0.2810451 0.5900954 0.7749225 0.4426628 0.0762391 0.9093871 0.5513743,

       0.6893635 0.8234433 0.9316785 0.7749225 0.6663087 0.236998 0.1419535 0.3321644 0.3306588,

       0.9432546 0.9280248 0.6140648 0.4426628 0.236998 0.7543832 0.6882105 0.6199138 0.7862424,

       0.9287864 0.7900982 0.8564316 0.0762391 0.1419535 0.6882105 0.9863298 0.1584623 0.3849384,

        0.487664 0.1142881 0.6149666 0.9093871 0.3321644 0.6199138 0.1584623 0.3205565 0.0744708,

       0.7798851 0.8905852 0.4655727 0.5513743 0.3306588 0.7862424 0.3849384 0.0744708 0.4806334}

call randseed(4321); 

X = RandNormal(&N, Mean, Cov);               /* 1000 x 9 matrix     */

/* check the sample mean and sample covariance */

SampleMean = mean(X);                        /* mean of each column */

SampleCov =  cov(X);                         /* sample covariance   */

/* print results */

c = "x1":"x9";

print (X[1000:9,])[label="First 5 Obs: MV Normal"];

print SampleMean[colname=c];

print SampleCov[colname=c rowname=c];

/* write SAS/IML matrix to SAS data set for plotting */

create MVN from X[colname=c];  append from X;  close MVN;

quit;

run;

1 REPLY 1
thanoon
Calcite | Level 5

i am sorry i forget the linear equation :

%let N=1000;

proc iml;

/* specify the mean and covariance of the population */

Mean = {1, 2, 3, 2, 1, 4, 5, 6, 1};

Cov = {0.8838659 0.9738211 0.5075826 0.8869405 0.6893635 0.9432546 0.9287864 0.487664 0.7798851,

       0.9738211 0.8771385 0.5668343 0.6656078 0.8234433 0.9280248 0.7900982 0.1142881 0.8905852,

       0.5075826 0.5668343 0.5448972 0.2810451 0.9316785 0.6140648 0.8564316 0.6149666 0.4655727,

       0.8869405 0.6656078 0.2810451 0.5900954 0.7749225 0.4426628 0.0762391 0.9093871 0.5513743,

       0.6893635 0.8234433 0.9316785 0.7749225 0.6663087 0.236998 0.1419535 0.3321644 0.3306588,

       0.9432546 0.9280248 0.6140648 0.4426628 0.236998 0.7543832 0.6882105 0.6199138 0.7862424,

       0.9287864 0.7900982 0.8564316 0.0762391 0.1419535 0.6882105 0.9863298 0.1584623 0.3849384,

        0.487664 0.1142881 0.6149666 0.9093871 0.3321644 0.6199138 0.1584623 0.3205565 0.0744708,

       0.7798851 0.8905852 0.4655727 0.5513743 0.3306588 0.7862424 0.3849384 0.0744708 0.4806334};

call randseed(4321); 

X = RandNormal(&N, Mean, Cov);               /* 1000 x 9 matrix     */

/* check the sample mean and sample covariance */

SampleMean = mean(X);                        /* mean of each column */

SampleCov =  cov(X);                         /* sample covariance   */

/* generate Y according to regression model */

beta = {2, 1, -1, 2, 1, 5, 6, 2, -2};               /* params, not including intercept */

Y = 1 + X*beta + eps;          

/* write SAS data set */

varNames = ('x1':'x9') || {"Y"};

output = X || Y;

run;

sas-innovate-2026-white.png



April 27 – 30 | Gaylord Texan | Grapevine, Texas

Registration is open

Walk in ready to learn. Walk out ready to deliver. This is the data and AI conference you can't afford to miss.
Register now and lock in 2025 pricing—just $495!

Register now

From The DO Loop
Want more? Visit our blog for more articles like these.
Discussion stats
  • 1 reply
  • 1265 views
  • 0 likes
  • 1 in conversation