BookmarkSubscribeRSS Feed
thanoon
Calcite | Level 5

HI ALL

i need your help to correct this commands ( simulation of multivariate regression model).

regards\

&let N=1000;

proc iml;

/* specify the mean and covariance of the population */

Mean = {1, 2, 3 , 4, 5, 6, 7, 8, 9};

cov = {0.8838659 0.9738211 0.5075826 0.8869405 0.6893635 0.9432546 0.9287864 0.487664 0.7798851,

       0.9738211 0.8771385 0.5668343 0.6656078 0.8234433 0.9280248 0.7900982 0.1142881 0.8905852,

       0.5075826 0.5668343 0.5448972 0.2810451 0.9316785 0.6140648 0.8564316 0.6149666 0.4655727,

       0.8869405 0.6656078 0.2810451 0.5900954 0.7749225 0.4426628 0.0762391 0.9093871 0.5513743,

       0.6893635 0.8234433 0.9316785 0.7749225 0.6663087 0.236998 0.1419535 0.3321644 0.3306588,

       0.9432546 0.9280248 0.6140648 0.4426628 0.236998 0.7543832 0.6882105 0.6199138 0.7862424,

       0.9287864 0.7900982 0.8564316 0.0762391 0.1419535 0.6882105 0.9863298 0.1584623 0.3849384,

        0.487664 0.1142881 0.6149666 0.9093871 0.3321644 0.6199138 0.1584623 0.3205565 0.0744708,

       0.7798851 0.8905852 0.4655727 0.5513743 0.3306588 0.7862424 0.3849384 0.0744708 0.4806334}

call randseed(4321); 

X = RandNormal(&N, Mean, Cov);               /* 1000 x 9 matrix     */

/* check the sample mean and sample covariance */

SampleMean = mean(X);                        /* mean of each column */

SampleCov =  cov(X);                         /* sample covariance   */

/* print results */

c = "x1":"x9";

print (X[1000:9,])[label="First 5 Obs: MV Normal"];

print SampleMean[colname=c];

print SampleCov[colname=c rowname=c];

/* write SAS/IML matrix to SAS data set for plotting */

create MVN from X[colname=c];  append from X;  close MVN;

quit;

run;

1 REPLY 1
thanoon
Calcite | Level 5

i am sorry i forget the linear equation :

%let N=1000;

proc iml;

/* specify the mean and covariance of the population */

Mean = {1, 2, 3, 2, 1, 4, 5, 6, 1};

Cov = {0.8838659 0.9738211 0.5075826 0.8869405 0.6893635 0.9432546 0.9287864 0.487664 0.7798851,

       0.9738211 0.8771385 0.5668343 0.6656078 0.8234433 0.9280248 0.7900982 0.1142881 0.8905852,

       0.5075826 0.5668343 0.5448972 0.2810451 0.9316785 0.6140648 0.8564316 0.6149666 0.4655727,

       0.8869405 0.6656078 0.2810451 0.5900954 0.7749225 0.4426628 0.0762391 0.9093871 0.5513743,

       0.6893635 0.8234433 0.9316785 0.7749225 0.6663087 0.236998 0.1419535 0.3321644 0.3306588,

       0.9432546 0.9280248 0.6140648 0.4426628 0.236998 0.7543832 0.6882105 0.6199138 0.7862424,

       0.9287864 0.7900982 0.8564316 0.0762391 0.1419535 0.6882105 0.9863298 0.1584623 0.3849384,

        0.487664 0.1142881 0.6149666 0.9093871 0.3321644 0.6199138 0.1584623 0.3205565 0.0744708,

       0.7798851 0.8905852 0.4655727 0.5513743 0.3306588 0.7862424 0.3849384 0.0744708 0.4806334};

call randseed(4321); 

X = RandNormal(&N, Mean, Cov);               /* 1000 x 9 matrix     */

/* check the sample mean and sample covariance */

SampleMean = mean(X);                        /* mean of each column */

SampleCov =  cov(X);                         /* sample covariance   */

/* generate Y according to regression model */

beta = {2, 1, -1, 2, 1, 5, 6, 2, -2};               /* params, not including intercept */

Y = 1 + X*beta + eps;          

/* write SAS data set */

varNames = ('x1':'x9') || {"Y"};

output = X || Y;

run;

sas-innovate-white.png

🚨 Early Bird Rate Extended!

Join us for SAS Innovate 2025, our biggest and most exciting global event of the year, in Orlando, FL, from May 6-9.

 

Lock in the best rate now before the price increases on April 1.

Register now!

From The DO Loop
Want more? Visit our blog for more articles like these.
Discussion stats
  • 1 reply
  • 1043 views
  • 0 likes
  • 1 in conversation