HI ALL
i need your help to correct this commands ( simulation of multivariate regression model).
regards\
&let N=1000;
proc iml;
/* specify the mean and covariance of the population */
Mean = {1, 2, 3 , 4, 5, 6, 7, 8, 9};
cov = {0.8838659 0.9738211 0.5075826 0.8869405 0.6893635 0.9432546 0.9287864 0.487664 0.7798851,
0.9738211 0.8771385 0.5668343 0.6656078 0.8234433 0.9280248 0.7900982 0.1142881 0.8905852,
0.5075826 0.5668343 0.5448972 0.2810451 0.9316785 0.6140648 0.8564316 0.6149666 0.4655727,
0.8869405 0.6656078 0.2810451 0.5900954 0.7749225 0.4426628 0.0762391 0.9093871 0.5513743,
0.6893635 0.8234433 0.9316785 0.7749225 0.6663087 0.236998 0.1419535 0.3321644 0.3306588,
0.9432546 0.9280248 0.6140648 0.4426628 0.236998 0.7543832 0.6882105 0.6199138 0.7862424,
0.9287864 0.7900982 0.8564316 0.0762391 0.1419535 0.6882105 0.9863298 0.1584623 0.3849384,
0.487664 0.1142881 0.6149666 0.9093871 0.3321644 0.6199138 0.1584623 0.3205565 0.0744708,
0.7798851 0.8905852 0.4655727 0.5513743 0.3306588 0.7862424 0.3849384 0.0744708 0.4806334}
call randseed(4321);
X = RandNormal(&N, Mean, Cov); /* 1000 x 9 matrix */
/* check the sample mean and sample covariance */
SampleMean = mean(X); /* mean of each column */
SampleCov = cov(X); /* sample covariance */
/* print results */
c = "x1":"x9";
print (X[1000:9,])[label="First 5 Obs: MV Normal"];
print SampleMean[colname=c];
print SampleCov[colname=c rowname=c];
/* write SAS/IML matrix to SAS data set for plotting */
create MVN from X[colname=c]; append from X; close MVN;
quit;
run;
i am sorry i forget the linear equation :
%let N=1000;
proc iml;
/* specify the mean and covariance of the population */
Mean = {1, 2, 3, 2, 1, 4, 5, 6, 1};
Cov = {0.8838659 0.9738211 0.5075826 0.8869405 0.6893635 0.9432546 0.9287864 0.487664 0.7798851,
0.9738211 0.8771385 0.5668343 0.6656078 0.8234433 0.9280248 0.7900982 0.1142881 0.8905852,
0.5075826 0.5668343 0.5448972 0.2810451 0.9316785 0.6140648 0.8564316 0.6149666 0.4655727,
0.8869405 0.6656078 0.2810451 0.5900954 0.7749225 0.4426628 0.0762391 0.9093871 0.5513743,
0.6893635 0.8234433 0.9316785 0.7749225 0.6663087 0.236998 0.1419535 0.3321644 0.3306588,
0.9432546 0.9280248 0.6140648 0.4426628 0.236998 0.7543832 0.6882105 0.6199138 0.7862424,
0.9287864 0.7900982 0.8564316 0.0762391 0.1419535 0.6882105 0.9863298 0.1584623 0.3849384,
0.487664 0.1142881 0.6149666 0.9093871 0.3321644 0.6199138 0.1584623 0.3205565 0.0744708,
0.7798851 0.8905852 0.4655727 0.5513743 0.3306588 0.7862424 0.3849384 0.0744708 0.4806334};
call randseed(4321);
X = RandNormal(&N, Mean, Cov); /* 1000 x 9 matrix */
/* check the sample mean and sample covariance */
SampleMean = mean(X); /* mean of each column */
SampleCov = cov(X); /* sample covariance */
/* generate Y according to regression model */
beta = {2, 1, -1, 2, 1, 5, 6, 2, -2}; /* params, not including intercept */
Y = 1 + X*beta + eps;
/* write SAS data set */
varNames = ('x1':'x9') || {"Y"};
output = X || Y;
run;
Join us for SAS Innovate 2025, our biggest and most exciting global event of the year, in Orlando, FL, from May 6-9. Sign up by March 14 for just $795.
Learn how to run multiple linear regression models with and without interactions, presented by SAS user Alex Chaplin.
Find more tutorials on the SAS Users YouTube channel.