Hi
 
I am trying to optimize the following code. It tries to find the values of and AR(2) given an initial error variance and a convergence variance.
I have been able to set the problem in Excel Solver and the solution converges. When I try to solve it in SAS I am getting two errors:
Either it doesnt compute anything and give me values of the objective function with the same initial parameters that are larger than if I just call the function with the same values, or it gives me ERROR: Overflow error in *`.
 
I have noticed that the value of the gradient is very large. What puzzles me is why Solver using a gradient search algorithm would be able and SAS IML wont. I have use several routines with no success.
 
Below is the code I am using
 
Thanks
 
proc iml; free;
h=10; /*maximum projection horizon*/
W=j(h,h,0); /*Create starting covariance matrix*/
F=j(h,h,0); /*Create parameter matrix*/
int=j(h,h,0);
year=7; /*Create vector with variance convergence*/
var_y=1.7935990244;
fc_cov=j(h,h,0); /*Create covariance matrix*/
lowIdx = do(h+1, (h*h)-1, h+1); /*Index for lower diagonal*/
F[lowIdx]=1;
weight=j(h,1,0);
weight[1:(h-year)]=1;
/*map variance matrix W and paramter matrix F*/
	W[1,1]=0.77;
start minsqre(param) global(h, W, F, int, var_y, fc_cov, weight);
	F[1,1]=param[1];
	F[1,2]=param[2];
/*Project forecast error variance*/
		do j=0 to (h-1);
			int=(F**j)*W*(t(F**j));
			fc_cov=fc_cov+int;
		end;
	y_var=diag(j(h,1,var_y));
	target=sum(diag(weight)#((fc_cov-y_var)##2));
	
	return(target);
finish minsqre;
theta={0.1 0.1};
opt=j(1,11,.); opt[1]=0; opt[2]=5;
cons={	.-1 . .,
		. 1 . .,
		1 1 -1 1,
		-1 1 -1 1 };
/*check4=minsqre(theta);*/
/*print check4;*/
call nlpqn(rc,thetares,"minsqre",theta,opt);
quit;