BookmarkSubscribeRSS Feed
🔒 This topic is solved and locked. Need further help from the community? Please sign in and ask a new question.
AndreMenezes
Fluorite | Level 6

I'm tryng to find MLE from inverse gamma distribution using SAS/IML, however when I run optmization appear an error. I suposse the error is because the function 'l' underflow. I have seen the Rick's blog about MLE (http://blogs.sas.com/content/iml/2011/10/12/maximum-likelihood-estimation-in-sasiml.html) and write this code:

 

proc iml;
/*Quantile*/
start qinvgama(p,alpha,beta);
    qf = 1/quantile("GAMMA",1-p,alpha,beta);
    return(qf);
finish;
/*Variate*/
start rinvgama(n,alpha,beta);
    u  = j(n,1);                
    call randgen(u, "Uniform");
    rg     = qinvgama(u,alpha,beta);
    return(rg);
finish;

start MLE(par) global (x);
   alpha    =     par[1];
   beta     =     par[2];
   n        =    nrow(x);
   l        = n#(alpha#log(beta) - log(gamma(alpha))) - beta#sum(1/x) - (alpha + 1)#sum(log(x));
   return (l);
finish;

x = rinvgama(100,2,3);
sup = { 0   0,  
        .   .};
ini = {1.2 3};
opt = {1, 4};
call nlpnra(it, resmle, "MLE", ini, opt, sup);

print resmle;

quit;


ERROR: (execution) Invalid argument to function.

 

1 ACCEPTED SOLUTION

Accepted Solutions
Rick_SAS
SAS Super FREQ

I think the error message is telling you that the parameters need to be strictly positive. Try

sup = { 1e-8 1e-8, 
         .    .};

Also, there is an easier way to generate from the inverse gamma:

If X ~ gamma(a, b) then 1/X ~ inverse-gamma(a, 1/b)

 

 

Some other facts about the inverse gamma distribution is available in the MCMC documentation:

- Definition (search for igamma)

- Potential confusion of parameters

View solution in original post

3 REPLIES 3
Rick_SAS
SAS Super FREQ

I think the error message is telling you that the parameters need to be strictly positive. Try

sup = { 1e-8 1e-8, 
         .    .};

Also, there is an easier way to generate from the inverse gamma:

If X ~ gamma(a, b) then 1/X ~ inverse-gamma(a, 1/b)

 

 

Some other facts about the inverse gamma distribution is available in the MCMC documentation:

- Definition (search for igamma)

- Potential confusion of parameters

AndreMenezes
Fluorite | Level 6

Thank you very much Rick. I change the way to generate random variate from the inverse gamma distribution. Now I'm using this:

 

start rinvgama(n,alpha,beta);
	aux	= j(n,1);                
	call randgen(aux, "Gamma", alpha, 1/beta);
	rg	= 1/aux; 		
	return(rg);
finish;
Rick_SAS
SAS Super FREQ

While searching my blog for something, I realized that I blogged about how to simulate from the inverse gamma distriution in 2014:

"Simulating from the Inverse Gamma Distribution in SAS"

sas-innovate-wordmark-2025-midnight.png

Register Today!

Join us for SAS Innovate 2025, our biggest and most exciting global event of the year, in Orlando, FL, from May 6-9. Sign up by March 14 for just $795.


Register now!

Multiple Linear Regression in SAS

Learn how to run multiple linear regression models with and without interactions, presented by SAS user Alex Chaplin.

Find more tutorials on the SAS Users YouTube channel.

From The DO Loop
Want more? Visit our blog for more articles like these.
Discussion stats
  • 3 replies
  • 2730 views
  • 3 likes
  • 2 in conversation