BookmarkSubscribeRSS Feed
Cnord
Calcite | Level 5

I have managed to get an output of this coding which indicates which model with parameter p,d and h is the best fit model. However, I am stucked on how to forecast the future price with lead=6 with the p=8, d=8 and h=1. Can anyone help me out ? I am using SAS 9.4 and this model is functional coefficient autoregressive model.

The coding for fiding the best fit model is as follow:

 

proc import out=pepper
datafile='C:\Downloads\WPJan97toDec15.xls'
dbms=excel replace;
sheet='Sheet1';
getnames=yes;
run;

 

proc print data=pepper;
run;

 

Proc iml;
use pepper;
read all into y;
pdh=j(1,4,999);
print pdh;
APEh=j(4,1,0);
print APEh;
u0=sum(y)/nrow(y);
n=nrow(y);
sum=sum(y);
print sum;
print n;
print u0;
do p=1 to 8;
             do d=1 to p;
                       x0=j(nrow(y),p,0);
                       do i= p+1 to nrow(y);
                                  x0[i,]=y[i-1:i-p]`;
                       end;
                       do h=0.1 to 1 by 0.1;
                                   do j=1 to 4;
                                               t=nrow(y)-(7*j);
                                               n=t-p;
                                               x=j(t,p,0);
                                               u=j(t,1,0);
                                               do i= p+1 to t;
                                                            x[i,]=y[i-1:i-p]`;
                                                            u[i]=y[i-d];
                                               end;
                                               x1=x[p+1:t,];
                                               u1=u[p+1:t,];
                                               w=j(n,n,0);
                                               w1=j(n,1,0);
                                               x2=j(n,p,1);
                                               do i=1 to n;
                                                           ind=(u1[i]-u0)/h;
                                                           if (ind<=1) then do;
                                                           w[i,i]=(0.75/h)*(1-((u1[i]-u0)*(u1[i]-u0))/(h*h));

                                                           w1[i,]=w[i,i];
                                                           x2[i,]=x1[i,]*(u1[i]-u0);
                                                           end;
                                                           else do;
                                                           w[i,i]=0;
                                                           w1[i,]=w[i,i];
                                                           x2[i,]=x1[i,]*(u1[i]-u0);
                                                           end;
                                               end;
                                               Xcurl=j(n,2*p,0);
                                               xcurl=xl||x2;
                                               y1=y[p+1:t,];
                                               beta=inv(xcurl`*w*xcurl)*(xcurl`*w*y1);
                                               beta1=beta[1: p,];
                                               yhat=xcurl*beta;
                                               error=y1-yhat;
                                               apeerror=j(7,1,0);
                                               apeerror=error[n-7*j+1:n-7*j+7,];
                                               APEh[j]=(1/7)*apeerror`*apeerror;
                                   end;
                                   APE=sum(APEh)/4;
                                   pdh=pdh//(p||d||h||APE);
                       end;
             end;
end;
pdh=pdh[2:nrow(pdh),];
minAPE=min(pdh[,4]);
do i=1 to nrow(pdh);
             if (pdh[i,4]=minAPE) then rw=i;
end;
result=pdh[rw,];
print beta1;

2 REPLIES 2
Cnord
Calcite | Level 5

I also facing a trouble that my result for beta1 and minAPE is extremely large. I don't know what causes it to be like this.

sas-innovate-2026-white.png



April 27 – 30 | Gaylord Texan | Grapevine, Texas

Registration is open

Walk in ready to learn. Walk out ready to deliver. This is the data and AI conference you can't afford to miss.
Register now and lock in 2025 pricing—just $495!

Register now

Discussion stats
  • 2 replies
  • 1317 views
  • 0 likes
  • 2 in conversation