BookmarkSubscribeRSS Feed
okla
Fluorite | Level 6

Hi, 

 

I have run a Stepwise regression model, and i am trying to interpret result, one of the Attributes, Addr_Type is with 0 degree of freedom and P value = ".", 

 

How should i interpret this? Would appreciate your help. Thanks. 

 

Here are my output... 

 

Type 3 Analysis of Effects

Wald
Effect DF Chi-Square Pr > ChiSq

Addr_Type 0 . .
Generation 7 102.7977 <.0001
IMP_LG10_If_Recency 1 184.6600 <.0001
OPT_Cnt_Issue_Agt 1 24.5667 <.0001
OPT_Cnt_RP 3 115.4793 <.0001
OPT_Entry_Ph_Age 3 11.7314 0.0084
OPT_Mosaic_Score 2 11.1377 0.0038
OPT_Patch_Age 3 151.7408 <.0001
OPT_TWP_UIP_Lifestyle 2 15.7572 0.0004
OPT_TWP_UIP_PA 1 15.5400 <.0001
OPT_TWP_W_Savings 2 26.2818 <.0001
Patch_Marital 5 16.5682 0.0054
Ph_Gender 4 20.2264 0.0005
ind_GECashflo 1 11.1497 0.0008
ind_GS 1 9.3346 0.0022
ind_LIssue_EQ_LSrvcng_Agt 1 22.9814 <.0001

 

Analysis of Maximum Likelihood Estimates

Standard Wald Standardized
Parameter DF Estimate Error Chi-Square Pr > ChiSq Estimate Exp(Est)

Intercept 1 -8.6528 23.3951 0.14 0.7115 0.000
Addr_Type 0. Unkno 1 -0.5979 0.2624 5.19 0.0227 0.550
Addr_Type HDB 1 -0.2478 0.0768 10.40 0.0013 0.781
Addr_Type Others 1 -0.3214 0.1351 5.66 0.0174 0.725
Addr_Type Private 0 0 . . . . .

 

 

OKLA. 

7 REPLIES 7
Reeza
Super User

Address type is categorical. If you have a categorical variable the reference level will not have estimates. 

okla
Fluorite | Level 6

Hi, Thanks for your reply, but how does that explain my other categorical variables (e.g Generation/Gender/etc), they all have P value? 

 

Thanks. 

 

OKLA.

Reeza
Super User

They shouldn't...what parameterization method did you use?

okla
Fluorite | Level 6

Hi, 

 

I am using SAS EM 12.1.

 

 

SAS.png

 

 

OKLA

Reeza
Super User

Change input coding from GLM to Reference and re-run. 

Ksharp
Super User
That is because the last level of Addr_Type is reference level, 
that means in real model there is not a variable corresponding to this level,
therefore you will see DF=0 P=. for this level.

If you want see non-missing value,you could change the reference level,like:
class Addr_Type(ref=first) ...........


okla
Fluorite | Level 6

Hi, 

 

Thanks again for the help. Really appreciate it. 

 

I have tried 2 methods. 

 

Method 1 - Changing the GLM to Deviation in the Input Coding (EM12.1 only have either "GLM" or "Deviation"). Once i have changed it to Deviation, Addr_Type p value = 0.0012 now, but the reason why i used GLM at the first place is so that i have a reference variable to compare to, instead of compare to all the level in the same categorical (easier for me to explain to business users). 

 

Type 3 Analysis of Effects

Wald
Effect DF Chi-Square Pr > ChiSq

Addr_Type 3 15.8203 0.0012
Generation 7 102.7977 <.0001
IMP_LG10_If_Recency 1 184.6600 <.0001
OPT_Cnt_Issue_Agt 1 24.5667 <.0001
OPT_Cnt_RP 3 115.4793 <.0001
OPT_Entry_Ph_Age 3 11.7314 0.0084
OPT_Mosaic_Score 2 11.1377 0.0038
OPT_Patch_Age 3 151.7408 <.0001
OPT_TWP_UIP_Lifestyle 2 15.7572 0.0004
OPT_TWP_UIP_PA 1 15.5400 <.0001
OPT_TWP_W_Savings 2 26.2818 <.0001
Patch_Marital 5 16.5682 0.0054
Ph_Gender 4 20.2264 0.0005
ind_GECashflo 1 11.1497 0.0008
ind_GS 1 9.3346 0.0022
ind_LIssue_EQ_LSrvcng_Agt 1 22.9814 <.0001

 

Method 2 - I changed to use a different reference group (i.e. Addr_Type = Private as a reference group (in here is called REP_Addr_Type), the same P = . came out. 

 

Type 3 Analysis of Effects

Wald
Effect DF Chi-Square Pr > ChiSq

Generation 7 102.7977 <.0001
IMP_REP_LG10_If_Recency 1 184.6600 <.0001
OPT_Cnt_Issue_Agt 1 24.5667 <.0001
OPT_Cnt_RP 3 115.4793 <.0001
OPT_Entry_Ph_Age 3 11.7314 0.0084
OPT_Mosaic_Score 2 11.1377 0.0038
OPT_Patch_Age 3 151.7408 <.0001
OPT_TWP_UIP_Lifestyle 2 15.7572 0.0004
OPT_TWP_UIP_PA 1 15.5400 <.0001
OPT_TWP_W_Savings 2 26.2818 <.0001
Patch_Marital 5 16.5682 0.0054
Ph_Gender 4 20.2264 0.0005
REP_Addr_Type 0 . .
ind_GECashflo 1 11.1497 0.0008
ind_GS 1 9.3346 0.0022
ind_LIssue_EQ_LSrvcng_Agt 1 22.9814 <.0001

 

OKLA. 

sas-innovate-2026-white.png



April 27 – 30 | Gaylord Texan | Grapevine, Texas

Registration is open

Walk in ready to learn. Walk out ready to deliver. This is the data and AI conference you can't afford to miss.
Register now and lock in 2025 pricing—just $495!

Register now

How to choose a machine learning algorithm

Use this tutorial as a handy guide to weigh the pros and cons of these commonly used machine learning algorithms.

Find more tutorials on the SAS Users YouTube channel.

Discussion stats
  • 7 replies
  • 2420 views
  • 0 likes
  • 3 in conversation