BookmarkSubscribeRSS Feed
tress
New User | Level 1

Hey everyone,

I’m relatively new to data science and currently working on a project that involves a dataset with over 60 columns. Many of these columns are categorical, with more than 100 unique values each.

My issue arises when I try to apply one-hot encoding to these categorical columns. It seems like I’m running into the curse of dimensionality problem, and I’m not quite sure how to proceed from here.

I’d really appreciate some advice or guidance on how to effectively handle high-dimensional data in this context. Are there alternative encoding techniques I should consider? Or perhaps there are preprocessing steps I’m overlooking?

Any insights or tips would be immensely helpful.

Thanks in advance!

2 REPLIES 2
PaigeMiller
Diamond | Level 26

Can you describe the project you are working on? Can you tell us what the desired outcome(s) is of the analysis of this data? When you say you "need advice on handling", well there are a gazillion ways to "handle" such data and unless we know what desired outcome(s) are, we can't really give you good advice.

--
Paige Miller
FreelanceReinh
Jade | Level 19

Also, have you already tried some of the suggestions from the Reddit thread you copied your post from, e.g., to "aggregate the 100+ categories into a smaller set of categories"?

sas-innovate-2024.png

Don't miss out on SAS Innovate - Register now for the FREE Livestream!

Can't make it to Vegas? No problem! Watch our general sessions LIVE or on-demand starting April 17th. Hear from SAS execs, best-selling author Adam Grant, Hot Ones host Sean Evans, top tech journalist Kara Swisher, AI expert Cassie Kozyrkov, and the mind-blowing dance crew iLuminate! Plus, get access to over 20 breakout sessions.

 

Register now!

How to choose a machine learning algorithm

Use this tutorial as a handy guide to weigh the pros and cons of these commonly used machine learning algorithms.

Find more tutorials on the SAS Users YouTube channel.

Discussion stats
  • 2 replies
  • 104 views
  • 0 likes
  • 3 in conversation