BookmarkSubscribeRSS Feed
🔒 This topic is solved and locked. Need further help from the community? Please sign in and ask a new question.
Reyna
Calcite | Level 5

I want to minimize an unconstrained NLP problem, having 4 variables. But, upon running the SAS file the solution status was failed and I got a warning that the "Objective function cannot be evaluated at the starting point." Can somebody PLEASE help me with this? I attached here the code. I am new to SAS by the way, it would be a great help for me.

proc optmodel;
	var x{1..4} >=0 <=50;
	min g=(-1) * ((-1) * (((10/x[1])^x[1]) * ((12/x[2])^x[2]) * 
		((0.5/(2*(0.4*x[3]-0.2*x[1]-1)))^(0.4*x[3]-0.2*x[1]-1)) * 
		((0.4/(2*(0.55*x[4]-0.6*x[2]-1)))^(0.55*x[4]-0.6*x[2]-1)) * 
		((50/(0.6*x[3]-0.8*x[1]))^(0.6*x[3]-0.8*x[1])) * 
		((60/(0.5*x[4]-0.4*x[2]))^(0.5*x[4]-0.4*x[2])) * ((100/x[3])^(-x[3])) * 
		((120/x[4])^(-x[4])) * ((((-0.34*x[3]-0.08*x[1]-0.475*x[4]+0.66*x[2]+3)*4)/(195*(-0.34*x[3]-0.08*x[1]+1.6)))^(-0.34*x[3]-0.08*x[1]+1.6)) 
		* ((((-0.34*x[3]-0.08*x[1]-0.475*x[4]+0.66*x[2]+3)*2)/(195*(-0.475*x[4]-0.66*x[2]+1.4)))^(-0.475*x[4]+0.66*x[2]+1.4)))^(-1));

	/* starting point */
	x[1]=0.5;
	x[2]=0.5;
	x[3]=0.5;
	x[4]=0.5;
	solve with nlp / algorithm=activeset;
	print x;
quit;
1 ACCEPTED SOLUTION

Accepted Solutions
RobPratt
SAS Super FREQ

Because your objective function has product form, it is natural to minimize the log instead:

   min log_g = -(
      x[1]*log(10/x[1]) 
      + x[2]*log(12/x[2])
      + y[1]*log(0.5/(2*y[1]))
      + y[2]*log(0.4/(2*y[2]))
      + y[3]*log(50/y[3])
      + y[4]*log(60/y[4])
      - x[3]*log(100/x[3])
      - x[4]*log(120/x[4])
      + y[6]*log(y[5]*4/(195*y[6]))
      + y[7]*log(y[5]*2/(195*y[7]))
   );

The resulting solution status is then Optimal rather than Best Feasible.

View solution in original post

10 REPLIES 10
RobPratt
SAS Super FREQ

I have a suggestion that should help, but first I want to make sure that your objective function is defined correctly.  In the final line of the MIN statement, did you really mean to have both -0.66*x[2] and +0.66*x[2], or should those coefficients be the same?

Reyna
Calcite | Level 5

Hi Rob,

I am sorry for typo error, I mean to have only +0.66 in the objective function. By the way the objective function should be define by: 

proc optmodel;
	var x{1..4} >=0 <=50;
	min g=(-1) * ((-1) * (((10/x[1])^x[1]) * ((12/x[2])^x[2]) * 
		((0.5/(2*(0.4*x[3]-0.2*x[1]-1)))^(0.4*x[3]-0.2*x[1]-1)) * 
		((0.4/(2*(0.55*x[4]-0.6*x[2]-1)))^(0.55*x[4]-0.6*x[2]-1)) * 
		((50/(0.6*x[3]-0.8*x[1]))^(0.6*x[3]-0.8*x[1])) * 
		((60/(0.5*x[4]-0.4*x[2]))^(0.5*x[4]-0.4*x[2])) * ((100/x[3])^(-x[3])) * 
		((120/x[4])^(-x[4])) * ((((-0.34*x[3]-0.08*x[1]-0.475*x[4]+0.66*x[2]+3)*4)/(195*(-0.34*x[3]-0.08*x[1]+1.6)))^(-0.34*x[3]-0.08*x[1]+1.6)) * ((((-0.34*x[3]-0.08*x[1]-0.475*x[4]+0.66*x[2]+3)*2)/(195*(-0.475*x[4]+0.66*x[2]+1.4)))^(-0.475*x[4]+0.66*x[2]+1.4)))^(-1));

	/* starting point */
	x[1]=0.5;
	x[2]=0.5;
	x[3]=0.5;
	x[4]=0.5;
	solve with nlp / algorithm=activeset;
	print x;
quit;
Reyna
Calcite | Level 5
I hope you can help me with this :))
RobPratt
SAS Super FREQ

One way to avoid typos is to use implicit variables to represent expressions that appear in multiple places:

   impvar y {i in 1..7} = 
      if i = 1 then 0.4*x[3]-0.2*x[1]-1
      else if i = 2 then 0.55*x[4]-0.6*x[2]-1
      else if i = 3 then 0.6*x[3]-0.8*x[1]
      else if i = 4 then 0.5*x[4]-0.4*x[2]
      else if i = 5 then -0.34*x[3]-0.08*x[1]-0.475*x[4]+0.66*x[2]+3
      else if i = 6 then -0.34*x[3]-0.08*x[1]+1.6
      else if i = 7 then -0.475*x[4]+0.66*x[2]+1.4;
   min g=(-1) * ((-1) * (((10/x[1])^x[1]) * ((12/x[2])^x[2]) * 
      ((0.5/(2*y[1]))^y[1]) * 
      ((0.4/(2*y[2]))^y[2]) * 
      ((50/y[3])^y[3]) * 
      ((60/y[4])^y[4]) * ((100/x[3])^(-x[3])) * 
      ((120/x[4])^(-x[4])) * (((y[5]*4)/(195*y[6]))^y[6]) 
      * (((y[5]*2)/(195*y[7]))^y[7]))^(-1));

With or without these changes, try using the multistart option:

   solve with nlp / ms;
Reyna
Calcite | Level 5
Hi Rob, I just want to know it is necessary to replace the X variables in the if statements with Y? Or I just need to have it that way?
Reyna
Calcite | Level 5

Hi there, I tried running the code that you sent me however I got this error saying "Statement is not valid or it is used out of proper order.

 
 1          OPTIONS NONOTES NOSTIMER NOSOURCE NOSYNTAXCHECK;
 72         
 73            impvar y {i in 1..7} =
               ______
               180
 ERROR 180-322: Statement is not valid or it is used out of proper order.
 
 74               if i = 1 then 0.4*x[3]-0.2*x[1]-1
 75               else if i = 2 then 0.55*x[4]-0.6*x[2]-1
 76               else if i = 3 then 0.6*x[3]-0.8*x[1]
 77               else if i = 4 then 0.5*x[4]-0.4*x[2]
 78               else if i = 5 then -0.34*x[3]-0.08*x[1]-0.475*x[4]+0.66*x[2]+3
 79               else if i = 6 then -0.34*x[3]-0.08*x[1]+1.6
 80               else if i = 7 then -0.475*x[4]+0.66*x[2]+1.4;
 
 81            min g=(-1) * ((-1) * (((10/x[1])^x[1]) * ((12/x[2])^x[2]) *
               ___
               180
 ERROR 180-322: Statement is not valid or it is used out of proper order.
 
 82               ((0.5/(2*y[1]))^y[1]) *
 83               ((0.4/(2*y[2]))^y[2]) *
 84               ((50/y[3])^y[3]) *
 85               ((60/y[4])^y[4]) * ((100/x[3])^(-x[3])) *
 86               ((120/x[4])^(-x[4])) * (((y[5]*4)/(195*y[6]))^y[6])
 87               * (((y[5]*2)/(195*y[7]))^y[7]))^(-1));
 
 88         
 89                  solve with nlp / ms;
                     _____
                     180
 
 ERROR 180-322: Statement is not valid or it is used out of proper order.
 
 90         
 91         OPTIONS NONOTES NOSTIMER NOSOURCE NOSYNTAXCHECK;
 104        


Reyna
Calcite | Level 5

Hi Rob, I just want to ask what if I run this code and I don't want to set an upper bound for my Variables X[1].. X[4], therefore I would like them only to be greater than or equal to zero. However, I've tried running this code multiple times and I've got different results for X and it only says that it has only the "best feasible solution" everytime I run it. I was just concerned about how can I deal with this type of problem? or Can we have options other than multistart, or shall we incorporate a search method for this? I'm clueless. Thanks for the help! 🙂 

proc optmodel;
	var x{1..4} >=0;
	min g=(-1) * ((-1) * (((10/x[1])^x[1]) * ((12/x[2])^x[2]) * 
		((0.5/(2*(0.4*x[3]-0.2*x[1]-1)))^(0.4*x[3]-0.2*x[1]-1)) * 
		((0.4/(2*(0.55*x[4]-0.6*x[2]-1)))^(0.55*x[4]-0.6*x[2]-1)) * 
		((50/(0.6*x[3]-0.8*x[1]))^(0.6*x[3]-0.8*x[1])) * 
		((60/(0.5*x[4]-0.4*x[2]))^(0.5*x[4]-0.4*x[2])) * ((100/x[3])^(-x[3])) * 
		((120/x[4])^(-x[4])) * ((((-0.34*x[3]-0.08*x[1]-0.475*x[4]+0.66*x[2]+3)*4)/(195*(-0.34*x[3]-0.08*x[1]+1.6)))^(-0.34*x[3]-0.08*x[1]+1.6)) 
		* ((((-0.34*x[3]-0.08*x[1]-0.475*x[4]+0.66*x[2]+3)*2)/(195*(-0.475*x[4]+0.66*x[2]+1.4)))^(-0.475*x[4]+0.66*x[2]+1.4)))^(-1));

   impvar y {i in 1..7} = 
      if i = 1 then 0.4*x[3]-0.2*x[1]-1
      else if i = 2 then 0.55*x[4]-0.6*x[2]-1
      else if i = 3 then 0.6*x[3]-0.8*x[1]
      else if i = 4 then 0.5*x[4]-0.4*x[2]
      else if i = 5 then -0.34*x[3]-0.08*x[1]-0.475*x[4]+0.66*x[2]+3
      else if i = 6 then -0.34*x[3]-0.08*x[1]+1.6
      else if i = 7 then -0.475*x[4]+0.66*x[2]+1.4;
   min f=(-1) * ((-1) * (((10/x[1])^x[1]) * ((12/x[2])^x[2]) * 
      ((0.5/(2*y[1]))^y[1]) * 
      ((0.4/(2*y[2]))^y[2]) * 
      ((50/y[3])^y[3]) * 
      ((60/y[4])^y[4]) * ((100/x[3])^(-x[3])) * 
      ((120/x[4])^(-x[4])) * (((y[5]*4)/(195*y[6]))^y[6]) 
      * (((y[5]*2)/(195*y[7]))^y[7]))^(-1));
 


         solve with nlp / ms;
         print x;
RobPratt
SAS Super FREQ

Because your objective function has product form, it is natural to minimize the log instead:

   min log_g = -(
      x[1]*log(10/x[1]) 
      + x[2]*log(12/x[2])
      + y[1]*log(0.5/(2*y[1]))
      + y[2]*log(0.4/(2*y[2]))
      + y[3]*log(50/y[3])
      + y[4]*log(60/y[4])
      - x[3]*log(100/x[3])
      - x[4]*log(120/x[4])
      + y[6]*log(y[5]*4/(195*y[6]))
      + y[7]*log(y[5]*2/(195*y[7]))
   );

The resulting solution status is then Optimal rather than Best Feasible.

Reyna
Calcite | Level 5

Indeed the solution that you recommended was brilliant and I thank you for that. I never had that idea before 🙂 In line with this, I tried this approach in evaluating the optimal values for another unconstrained minimization, however, it says that the solution status is failed. I guess I've had some problem with formulation? or in dealing with this type should require other type of solver? 

proc optmodel;
	var x{1..4} >=0;


   impvar y {i in 1..8} = 
      if i = 1 then -((-0.6*4.5)/(1.6*5.5))*x[1]-(4.5/5.5)*x[3]
      else if i = 2 then -((-0.7*5.2)/(1.7*6.2))*x[2]-(5.2/6.2)*x[4]
      else if i = 3 then (-1/0.72)+((1/0.72)+((-0.6*15.5)/(0.72*1.6*5.5)))*x[1]+((15.5/(0.72*5.5))-((1/0.72)+1))*x[3]
      else if i = 4 then (-1/0.78)+((1/0.78)+((-0.7*17.6)/(0.78*1.7*6.2)))*x[2]+((17.6/(0.78*6.2))-((1/0.78)+1))*x[4]
      else if i = 5 then (0.6/(1.6*5.5))*x[1]-(1/5.5)*x[3]
      else if i = 6 then (0.7/(1.7*6.2))*x[2]-(1/6.2)*x[4]
      else if i = 7 then (-1/0.72)+((1/0.72)+(((4.5*5.5)/0.72)+(2/0.72)+1)*(-0.6/1.6))*x[1]-(((5.5*4.5)+1)/0.72)*x[3]
      else if i = 8 then (-1/0.78)+((1/0.78)+(((5.2*6.2)/0.78)+(2/0.78)+1)*(-0.7/1.7))*x[2]-(((5.2*6.2)+1)/0.78)*x[4];
      
	min log_h = -(
      - x[1]*log(3500/(300*x[1])) 
      - x[2]*log(4000/(300*x[2]))
      + x[3]*log(175/x[3]) 
      + x[4]*log(64000/(300*x[4]))
      + y[1]*log(3500/(300*y[1]))
      + y[2]*log(4000/(300*y[2]))
      + y[3]*log(0.15/(600*y[3]))
      + y[4]*log(0.2/(600*y[4]))
      + y[5]*log(5250/y[5])
      + y[6]*log(2000000/(300*y[6]))
      - y[7]*log(3.9/(45*y[7]))
      - y[8]*log(4.3/(45*y[8]))
      );
   
         solve with nlp / ms;
         print x;
quit;

 

RobPratt
SAS Super FREQ

The log function requires a positive argument, and that implies that each x[i] and y[i] should be positive.  But x[2], y[4], and y[8] cannot all be nonnegative, as detected by using the IIS functionality:

 

   con c {i in 1..8}: y[i] >= 0;
   solve noobj with lp / iis=on;
   expand / iis;

 

SAS Output

Var x[2] >= 0                                                                             
Constraint c[4]: y[4] >= 0                                                                
Constraint c[8]: y[8] >= 0 

 

Now expand y[4] and y[8]:

 

   expand y[4];
   expand y[8];

SAS Output

Impvar y[4] = 1.3573200993*x[4] - 0.2165134044*x[2] - 1.2820512821                        

Impvar y[8] = - 42.615384615*x[4] - 17.205128205*x[2] - 1.2820512821                      

 

Indeed, x[2] >= 0 and y[4] >= 0 together imply x[4] >= 0, which forces y[8] < 0.  I would recommend checking your formula for y[8], which should not have all coefficients negative.

 

SAS Innovate 2025: Save the Date

 SAS Innovate 2025 is scheduled for May 6-9 in Orlando, FL. Sign up to be first to learn about the agenda and registration!

Save the date!

Multiple Linear Regression in SAS

Learn how to run multiple linear regression models with and without interactions, presented by SAS user Alex Chaplin.

Find more tutorials on the SAS Users YouTube channel.

Discussion stats
  • 10 replies
  • 1878 views
  • 3 likes
  • 2 in conversation