Hi, Thank you for your help.. (I will try to concretely describe the problem) Yes, those 3 variables are mutually highly correlated (r = 0,70 to max. 0,85), because they describe 3 different colour characteristics (L*, a*, b*) change in dependence of fish fillets salting time (2 hours, 4 and 6 hours).. We know that in system with high salt concentration, muscle tissue will release water, and "absorb" salt, and there is colour changes - those 3 colour variable are also in high correlation with water and salt content in fish muscle during process... (In this content, i will not describe other measured Y variables that are related to study) Changes in water & salt content are most important physicochemical characteristic that allow us to "monitor" microbiological stability of these products, so that will be safe for human consumption.. My goal of stat. analysis is to predict water & salt content from 3 colour variable, or to be more precise, to introduce possibility for industrial usage...I was first tried used a canonical correlation analysis, then PLS and Correlated Component Regression (in XLSTAT) After consulting with XLSTAT staff, they told me: "Unfortunately, the PLSR and CCR are not solutions for residual heteroscedasticity and/or autocorrelation of residuals", which are issues in my reg. models.. After that, i was tried to use discrim. function (from MANOVA) that combine those 3 colour variable, and use this function as predictor...or (don't know) maybe using a neural network model will resolve problem in the best way with max. predicting capability ?? Tnx, Tomislav
... View more