Hi, I'm new to this forum, but have used SAS for a number of years, and I am seeking guidance on proc GLIMMX. I'm testing how well plants establish after herbicide treatment (herb) and seeding methods (seed) applied across a disturbed landscape (fixed effects). The design is a staggered start experiment so that time-since-treatment effect (fixed factor) can be separated from year effects (random factor) as follows: -- Herbicide (2 levels) x seeding (3 levels) treatment combinations were randomly assigned to 24 plots (4 replicates per treatment combination) in each of 10 sites (blocking factor) --The plots were treated with herbicide and seeding treatments across 3 successive years (i.e., plots were treated at 4 sites in 2018, at another 3 sites in 2019, and another 3 in 2020). -- Seedlings were enumerated on plots (counts) for 2 years after treatments were implemented (e.g., plots treated in 2018 were measured in 2019 and 2020; plots treated in 2019 measured in 2020 and 2021, and so on for 2020 plots) --There is also a covariate (Covar) that is a count of neighbor shrubs, measured on each plot in each year. It will be relevant for my second question. I am using GLIMMIX to analyze herbicide, seeding, and time-since-treated and their interactions. I’m trying to estimate variances for the random effects, and as I am more familiar with MIXED, I’m unsure if I have the code written properly. data exper1;
input Time Year Site Herb$ Veg$ Plot Count Covar;
datalines;
2 2018 1 no A 21 3 3
2 2018 1 no A 25 12 5
2 2018 1 no A 29 2 0
2 2018 1 no A 32 1 1
2 2018 1 no B 19 2 2
2 2018 1 no B 22 10 13
2 2018 1 no B 23 6 1
2 2018 1 no B 30 6 7
2 2018 1 no C 24 4 7
2 2018 1 no C 26 4 4
2 2018 1 no C 28 6 3
2 2018 1 no C 31 3 3
2 2018 1 yes A 5 0 5
2 2018 1 yes A 6 7 3
2 2018 1 yes A 7 3 1
2 2018 1 yes A 10 1 4
2 2018 1 yes B 3 6 3
2 2018 1 yes B 4 2 6
2 2018 1 yes B 12 1 3
2 2018 1 yes B 16 1 5
2 2018 1 yes C 2 5 7
2 2018 1 yes C 9 5 6
2 2018 1 yes C 14 9 10
2 2018 1 yes C 15 14 6
2 2020 2 no A 20 0 33
2 2020 2 no A 21 0 34
2 2020 2 no A 29 0 16
2 2020 2 no A 32 0 47
2 2020 2 no B 23 0 24
2 2020 2 no B 24 0 31
2 2020 2 no B 28 0 28
2 2020 2 no B 31 0 37
2 2020 2 no C 17 0 25
2 2020 2 no C 18 1 20
2 2020 2 no C 22 0 24
2 2020 2 no C 26 0 28
2 2020 2 yes A 10 0 24
2 2020 2 yes A 12 0 24
2 2020 2 yes A 13 0 8
2 2020 2 yes A 15 0 5
2 2020 2 yes B 3 3 35
2 2020 2 yes B 6 0 25
2 2020 2 yes B 9 0 44
2 2020 2 yes B 14 0 40
2 2020 2 yes C 2 0 50
2 2020 2 yes C 8 0 26
2 2020 2 yes C 11 0 14
2 2020 2 yes C 16 0 5
2 2018 3 no A 17 1 2
2 2018 3 no A 24 1 0
2 2018 3 no A 25 5 4
2 2018 3 no A 32 3 3
2 2018 3 no B 18 2 5
2 2018 3 no B 29 1 0
2 2018 3 no B 30 0 5
2 2018 3 no B 31 0 0
2 2018 3 no C 20 1 6
2 2018 3 no C 23 0 3
2 2018 3 no C 27 0 0
2 2018 3 no C 28 0 0
2 2018 3 yes A 4 2 5
2 2018 3 yes A 14 1 0
2 2018 3 yes A 15 2 2
2 2018 3 yes A 16 0 0
2 2018 3 yes B 5 0 1
2 2018 3 yes B 9 0 0
2 2018 3 yes B 12 1 1
2 2018 3 yes B 13 0 0
2 2018 3 yes C 1 9 5
2 2018 3 yes C 7 2 0
2 2018 3 yes C 8 0 0
2 2018 3 yes C 10 1 3
2 2018 4 no A 17 1 21
2 2018 4 no A 20 5 24
2 2018 4 no A 26 0 22
2 2018 4 no A 27 4 27
2 2018 4 no B 21 27 31
2 2018 4 no B 28 0 23
2 2018 4 no B 31 2 32
2 2018 4 no B 32 28 23
2 2018 4 no C 19 25 19
2 2018 4 no C 22 3 25
2 2018 4 no C 25 1 39
2 2018 4 no C 29 3 30
2 2018 4 yes A 3 47 51
2 2018 4 yes A 10 6 23
2 2018 4 yes A 13 7 41
2 2018 4 yes A 14 0 25
2 2018 4 yes B 6 3 26
2 2018 4 yes B 8 1 32
2 2018 4 yes B 12 19 28
2 2018 4 yes B 15 0 32
2 2018 4 yes C 1 1 12
2 2018 4 yes C 2 3 39
2 2018 4 yes C 5 1 36
2 2018 4 yes C 9 1 36
2 2019 5 no A 18 0 10
2 2019 5 no A 23 5 21
2 2019 5 no A 27 12 26
2 2019 5 no A 31 0 11
2 2019 5 no B 17 0 26
2 2019 5 no B 21 0 21
2 2019 5 no B 28 1 14
2 2019 5 no B 29 2 13
2 2019 5 no C 19 1 8
2 2019 5 no C 20 0 17
2 2019 5 no C 22 4 6
2 2019 5 no C 24 4 16
2 2019 5 yes A 1 0 14
2 2019 5 yes A 6 1 21
2 2019 5 yes A 10 0 9
2 2019 5 yes A 14 2 4
2 2019 5 yes B 3 0 14
2 2019 5 yes B 11 1 13
2 2019 5 yes B 12 3 6
2 2019 5 yes B 16 2 7
2 2019 5 yes C 2 1 7
2 2019 5 yes C 4 2 8
2 2019 5 yes C 7 1 7
2 2019 5 yes C 9 0 7
2 2020 6 no A 23 3 32
2 2020 6 no A 24 41 35
2 2020 6 no A 29 2 4
2 2020 6 no A 31 0 6
2 2020 6 no B 17 0 0
2 2020 6 no B 21 0 24
2 2020 6 no B 27 16 21
2 2020 6 no B 30 3 56
2 2020 6 no C 22 15 40
2 2020 6 no C 26 18 38
2 2020 6 no C 28 2 43
2 2020 6 no C 32 9 41
2 2020 6 yes A 9 0 68
2 2020 6 yes A 10 7 50
2 2020 6 yes A 15 0 22
2 2020 6 yes A 16 0 25
2 2020 6 yes B 4 0 60
2 2020 6 yes B 5 2 34
2 2020 6 yes B 7 0 38
2 2020 6 yes B 11 20 39
2 2020 6 yes C 1 0 23
2 2020 6 yes C 3 0 36
2 2020 6 yes C 8 1 47
2 2020 6 yes C 13 3 54
2 2019 7 no A 18 0 44
2 2019 7 no A 25 2 38
2 2019 7 no A 26 0 33
2 2019 7 no A 32 0 32
2 2019 7 no B 23 0 17
2 2019 7 no B 24 0 64
2 2019 7 no B 27 5 43
2 2019 7 no B 28 1 38
2 2019 7 no C 17 1 28
2 2019 7 no C 19 0 35
2 2019 7 no C 20 10 37
2 2019 7 no C 29 5 31
2 2019 7 yes A 12 0 21
2 2019 7 yes A 13 3 21
2 2019 7 yes A 15 2 47
2 2019 7 yes A 16 2 50
2 2019 7 yes B 1 1 50
2 2019 7 yes B 2 4 43
2 2019 7 yes B 3 0 49
2 2019 7 yes B 8 0 57
2 2019 7 yes C 4 1 63
2 2019 7 yes C 5 2 41
2 2019 7 yes C 7 1 31
2 2019 7 yes C 10 3 28
2 2020 8 no A 17 0 24
2 2020 8 no A 26 6 21
2 2020 8 no A 28 1 56
2 2020 8 no A 32 4 40
2 2020 8 no B 20 2 38
2 2020 8 no B 22 1 43
2 2020 8 no B 25 0 41
2 2020 8 no B 30 1 68
2 2020 8 no C 19 0 50
2 2020 8 no C 24 0 22
2 2020 8 no C 27 2 25
2 2020 8 no C 29 11 60
2 2020 8 yes A 2 9 34
2 2020 8 yes A 6 6 38
2 2020 8 yes A 12 8 39
2 2020 8 yes A 14 0 23
2 2020 8 yes B 5 0 36
2 2020 8 yes B 8 0 47
2 2020 8 yes B 11 0 54
2 2020 8 yes B 15 0 9
2 2020 8 yes C 3 1 20
2 2020 8 yes C 4 0 23
2 2020 8 yes C 10 1 46
2 2020 8 yes C 16 0 17
2 2018 9 no A 21 16 56
2 2018 9 no A 23 0 34
2 2018 9 no A 26 2 38
2 2018 9 no A 29 0 32
2 2018 9 no B 18 19 66
2 2018 9 no B 20 5 68
2 2018 9 no B 25 5 25
2 2018 9 no B 28 4 16
2 2018 9 no C 19 7 23
2 2018 9 no C 22 3 11
2 2018 9 no C 31 1 25
2 2018 9 no C 32 25 62
2 2018 9 yes A 2 0 38
2 2018 9 yes A 4 0 39
2 2018 9 yes A 6 0 56
2 2018 9 yes A 10 0 39
2 2018 9 yes B 7 13 51
2 2018 9 yes B 11 2 36
2 2018 9 yes B 15 1 52
2 2018 9 yes B 16 1 49
2 2018 9 yes C 3 2 18
2 2018 9 yes C 5 1 19
2 2018 9 yes C 9 3 41
2 2018 9 yes C 13 13 69
2 2019 10 no A 23 3 5
2 2019 10 no A 24 1 1
2 2019 10 no A 26 0 13
2 2019 10 no A 32 3 3
2 2019 10 no B 18 0 0
2 2019 10 no B 19 0 7
2 2019 10 no B 25 0 6
2 2019 10 no B 29 0 7
2 2019 10 no C 17 1 3
2 2019 10 no C 21 1 4
2 2019 10 no C 28 3 6
2 2019 10 no C 31 4 7
2 2019 10 yes A 6 0 9
2 2019 10 yes A 10 0 7
2 2019 10 yes A 13 5 4
2 2019 10 yes A 14 3 9
2 2019 10 yes B 1 2 4
2 2019 10 yes B 2 2 3
2 2019 10 yes B 4 5 21
2 2019 10 yes B 16 0 5
2 2019 10 yes C 3 0 4
2 2019 10 yes C 7 0 7
2 2019 10 yes C 9 0 0
2 2019 10 yes C 11 0 6
3 2019 1 no A 21 0 7
3 2019 1 no A 25 10 5
3 2019 1 no A 29 2 4
3 2019 1 no A 32 2 5
3 2019 1 no B 19 2 5
3 2019 1 no B 22 7 14
3 2019 1 no B 23 4 2
3 2019 1 no B 30 2 5
3 2019 1 no C 24 0 12
3 2019 1 no C 26 9 9
3 2019 1 no C 28 4 8
3 2019 1 no C 31 2 3
3 2019 1 yes A 5 3 4
3 2019 1 yes A 6 8 4
3 2019 1 yes A 7 0 3
3 2019 1 yes A 10 2 7
3 2019 1 yes B 3 3 5
3 2019 1 yes B 4 0 14
3 2019 1 yes B 12 1 10
3 2019 1 yes B 16 0 8
3 2019 1 yes C 2 2 4
3 2019 1 yes C 9 1 9
3 2019 1 yes C 14 1 14
3 2019 1 yes C 15 14 11
3 2021 2 no A 20 0 36
3 2021 2 no A 21 0 43
3 2021 2 no A 29 0 17
3 2021 2 no A 32 0 49
3 2021 2 no B 23 0 19
3 2021 2 no B 24 0 30
3 2021 2 no B 28 0 28
3 2021 2 no B 31 0 41
3 2021 2 no C 17 0 25
3 2021 2 no C 18 1 20
3 2021 2 no C 22 0 41
3 2021 2 no C 26 0 33
3 2021 2 yes A 10 0 25
3 2021 2 yes A 12 0 29
3 2021 2 yes A 13 0 14
3 2021 2 yes A 15 0 12
3 2021 2 yes B 3 1 32
3 2021 2 yes B 6 0 25
3 2021 2 yes B 9 0 47
3 2021 2 yes B 14 0 32
3 2021 2 yes C 2 0 49
3 2021 2 yes C 8 0 30
3 2021 2 yes C 11 0 20
3 2021 2 yes C 16 0 4
3 2019 3 no A 17 5 4
3 2019 3 no A 24 1 2
3 2019 3 no A 25 2 3
3 2019 3 no A 32 3 4
3 2019 3 no B 18 1 5
3 2019 3 no B 29 1 1
3 2019 3 no B 30 0 2
3 2019 3 no B 31 3 0
3 2019 3 no C 20 13 8
3 2019 3 no C 23 1 3
3 2019 3 no C 27 2 0
3 2019 3 no C 28 2 2
3 2019 3 yes A 4 3 10
3 2019 3 yes A 14 1 2
3 2019 3 yes A 15 0 0
3 2019 3 yes A 16 0 0
3 2019 3 yes B 5 2 3
3 2019 3 yes B 9 0 0
3 2019 3 yes B 12 0 1
3 2019 3 yes B 13 0 0
3 2019 3 yes C 1 13 3
3 2019 3 yes C 7 2 2
3 2019 3 yes C 8 0 0
3 2019 3 yes C 10 0 5
3 2019 4 no A 17 1 31
3 2019 4 no A 20 0 30
3 2019 4 no A 26 2 26
3 2019 4 no A 27 1 43
3 2019 4 no B 21 6 30
3 2019 4 no B 28 0 29
3 2019 4 no B 31 4 47
3 2019 4 no B 32 9 45
3 2019 4 no C 19 3 18
3 2019 4 no C 22 0 30
3 2019 4 no C 25 1 41
3 2019 4 no C 29 0 45
3 2019 4 yes A 3 4 53
3 2019 4 yes A 10 3 25
3 2019 4 yes A 13 3 53
3 2019 4 yes A 14 2 43
3 2019 4 yes B 6 0 35
3 2019 4 yes B 8 0 35
3 2019 4 yes B 12 1 40
3 2019 4 yes B 15 0 42
3 2019 4 yes C 1 0 19
3 2019 4 yes C 2 5 48
3 2019 4 yes C 5 0 54
3 2019 4 yes C 9 0 41
3 2020 5 no A 18 5 11
3 2020 5 no A 23 15 25
3 2020 5 no A 27 22 25
3 2020 5 no A 31 9 16
3 2020 5 no B 17 40 21
3 2020 5 no B 21 8 10
3 2020 5 no B 28 5 8
3 2020 5 no B 29 6 8
3 2020 5 no C 19 6 8
3 2020 5 no C 20 6 17
3 2020 5 no C 22 25 6
3 2020 5 no C 24 16 16
3 2020 5 yes A 1 0 11
3 2020 5 yes A 6 0 23
3 2020 5 yes A 10 3 6
3 2020 5 yes A 14 5 5
3 2020 5 yes B 3 18 14
3 2020 5 yes B 11 0 5
3 2020 5 yes B 12 7 5
3 2020 5 yes B 16 9 3
3 2020 5 yes C 2 4 7
3 2020 5 yes C 4 9 4
3 2020 5 yes C 7 5 8
3 2020 5 yes C 9 1 7
3 2021 6 no A 23 4 35
3 2021 6 no A 24 30 39
3 2021 6 no A 29 4 7
3 2021 6 no A 31 0 4
3 2021 6 no B 17 0 5
3 2021 6 no B 21 0 6
3 2021 6 no B 27 15 31
3 2021 6 no B 30 3 19
3 2021 6 no C 22 9 25
3 2021 6 no C 26 13 19
3 2021 6 no C 28 2 22
3 2021 6 no C 32 2 50
3 2021 6 yes A 9 1 13
3 2021 6 yes A 10 5 16
3 2021 6 yes A 15 1 16
3 2021 6 yes A 16 0 25
3 2021 6 yes B 4 0 9
3 2021 6 yes B 5 4 17
3 2021 6 yes B 7 1 15
3 2021 6 yes B 11 5 21
3 2021 6 yes C 1 1 26
3 2021 6 yes C 3 0 6
3 2021 6 yes C 8 0 21
3 2021 6 yes C 13 1 26
3 2020 7 no A 18 0 9
3 2020 7 no A 25 3 20
3 2020 7 no A 26 1 23
3 2020 7 no A 32 2 46
3 2020 7 no B 23 1 17
3 2020 7 no B 24 0 60
3 2020 7 no B 27 0 39
3 2020 7 no B 28 4 26
3 2020 7 no C 17 5 34
3 2020 7 no C 19 1 35
3 2020 7 no C 20 7 43
3 2020 7 no C 29 1 33
3 2020 7 yes A 12 0 24
3 2020 7 yes A 13 2 26
3 2020 7 yes A 15 0 43
3 2020 7 yes A 16 6 43
3 2020 7 yes B 1 1 44
3 2020 7 yes B 2 1 40
3 2020 7 yes B 3 0 47
3 2020 7 yes B 8 2 46
3 2020 7 yes C 4 1 60
3 2020 7 yes C 5 2 37
3 2020 7 yes C 7 2 27
3 2020 7 yes C 10 7 26
3 2021 8 no A 17 0 35
3 2021 8 no A 26 1 22
3 2021 8 no A 28 0 51
3 2021 8 no A 32 0 42
3 2021 8 no B 20 0 37
3 2021 8 no B 22 1 37
3 2021 8 no B 25 0 37
3 2021 8 no B 30 1 62
3 2021 8 no C 19 0 42
3 2021 8 no C 24 0 34
3 2021 8 no C 27 2 29
3 2021 8 no C 29 7 59
3 2021 8 yes A 2 4 35
3 2021 8 yes A 6 1 42
3 2021 8 yes A 12 9 39
3 2021 8 yes A 14 0 29
3 2021 8 yes B 5 0 38
3 2021 8 yes B 8 0 41
3 2021 8 yes B 11 0 48
3 2021 8 yes B 15 0 24
3 2021 8 yes C 3 0 36
3 2021 8 yes C 4 0 35
3 2021 8 yes C 10 1 52
3 2021 8 yes C 16 0 31
3 2019 9 no A 21 6 56
3 2019 9 no A 23 0 34
3 2019 9 no A 26 1 38
3 2019 9 no A 29 0 32
3 2019 9 no B 18 8 66
3 2019 9 no B 20 0 68
3 2019 9 no B 25 3 25
3 2019 9 no B 28 0 16
3 2019 9 no C 19 0 23
3 2019 9 no C 22 0 11
3 2019 9 no C 31 1 25
3 2019 9 no C 32 5 62
3 2019 9 yes A 2 0 38
3 2019 9 yes A 4 0 39
3 2019 9 yes A 6 0 56
3 2019 9 yes A 10 0 39
3 2019 9 yes B 7 0 51
3 2019 9 yes B 11 0 36
3 2019 9 yes B 15 0 52
3 2019 9 yes B 16 2 49
3 2019 9 yes C 3 1 18
3 2019 9 yes C 5 1 19
3 2019 9 yes C 9 0 41
3 2019 9 yes C 13 4 69
3 2020 10 no A 23 1 4
3 2020 10 no A 24 0 0
3 2020 10 no A 26 0 8
3 2020 10 no A 32 5 4
3 2020 10 no B 18 0 0
3 2020 10 no B 19 0 9
3 2020 10 no B 25 0 3
3 2020 10 no B 29 0 3
3 2020 10 no C 17 0 3
3 2020 10 no C 21 0 1
3 2020 10 no C 28 1 11
3 2020 10 no C 31 0 10
3 2020 10 yes A 6 0 11
3 2020 10 yes A 10 1 10
3 2020 10 yes A 13 2 5
3 2020 10 yes A 14 1 7
3 2020 10 yes B 1 0 5
3 2020 10 yes B 2 1 6
3 2020 10 yes B 4 0 30
3 2020 10 yes B 16 2 1
3 2020 10 yes C 3 1 3
3 2020 10 yes C 7 0 7
3 2020 10 yes C 9 0 0
3 2020 10 yes C 11 0 1
;
run;
proc glimmix method = laplace data = exper1;
class SITE Herb veg time plot;
model count = herb|veg|time / dist=negbin link=log;
random site year site*year*time / subject= site*herb*veg type=ar(1);
run; First, I coded my random statement accordingly for a staggered start design with random block and year effects, shown as “random site year site*year*time:, but this is for a design WITHOUT replication within block. But I’m having difficulty understanding how to incorporate random plot effects, as I can’t find guidance on the SAS rules for pooling effects when my design has replication within site as well as the other sources of variation. Second, I want to compare this Herb|Veg|Time model with a model that uses a covariate measured at the plot level in each year (Covar) to see if it is a better model than the previous model (comparison of model AICCs). I expect this covariate may be a good explanation for the year effect, and it has mechanistic importance that is more informative. I think the following SAS code is appropriate: model count=herb veg Covar*herb Covar*veg time time*herb time*veg; random site / subject=site*herb*veg type=ar(1); I am hopeful someone can assist with my questions about the SAS code for this design. Thank you for assistance and insights.
... View more