Thanks for your reply and discussion, after looking at the data today and verifying it with another set of data, I have the following ideas: 1.In method comparison, x and y are usually not much different values and are often used for equivalence analysis.For example, the concentration of glucose in serum is tested with 2 IVD products, so that x and y are very close. 2.The data you used to test your code before, x and y, are very different, which in my opinion is already a significant inconsistency 3.So, this could be the reason why the results are problematic? Maybe MedCalc has its own way of handling similar data? 4.I think (of course, my experience is not enough), the main application area of PB regression is the analysis of laboratory test results,which is regression analysis between two similar data. So this problem is still very important and needs to be solved. 5.Another way of thinking, MedCalc has a built-in way of processing very small data, because many of the previous sets of data are 0.0X, or maybe this causes a slight deviation in the results? 6.I used another set of real data to verify, and the results are as follows(with Bootstrap CI😞 MedCalc: SAS: data: data have; label x="micrograms per deciliter" y="kiloOhms"; input x y @@; datalines; 3.28 3.42 1.91 2.22 15.93 17.45 16.72 17.16 13.83 14.38 1.81 1.94 9.61 8.43 16.06 17.69 16.46 18.10 5.75 7.53 0.053 0.06 17.75 20.28 13.72 15.30 0.857 1.01 14.63 16.08 16.23 15.51 4.42 4.87 2.02 2.33 17.74 19.18 4.12 3.12 15.90 17.16 4.89 5.36 1.65 1.56 21.37 22.71 0.296 0.33 2.66 2.68 11.46 12.07 18.16 16.88 1.85 1.73 11.83 13.61 0.998 1.24 3.80 4.22 6.79 7.85 15.37 18.06 1.37 1.48 8.11 9.88 0.145 0.16 1.63 1.61 6.15 5.88 5.80 5.76 2.41 2.39 17.03 17.32 0.343 0.40 3.75 3.89 8.05 8.95 7.38 6.82 9.76 11.29 3.43 4.24 7.07 8.64 8.46 8.97 6.25 7.24 1.66 1.36 3.98 4.21 9.11 8.08 10.83 11.47 4.66 4.43 8.90 7.89 15.43 15.60 2.87 2.33 0.032 0.03 19.80 21.17 14.92 15.83 6.14 6.68 3.90 4.20 0.132 0.14 0.824 0.92 4.09 4.63 3.22 3.39 7.56 8.13 5.67 6.96 1.53 1.07 5.21 6.58 9.66 8.57 6.48 6.44 1.99 2.29 21.96 22.77 18.08 18.45 11.89 13.24 11.65 11.97 15.02 15.71 0.440 0.42 19.12 20.80 7.13 7.17 16.15 17.54 15.91 17.05 17.76 18.62 11.81 12.12 5.34 5.00 6.19 7.55 5.59 5.66 9.39 9.35 9.45 9.24 6.14 6.67 4.30 4.83 11.46 10.35 3.99 4.34 3.51 3.53 3.33 3.18 9.94 8.58 12.77 14.25 1.56 1.61 11.10 10.56 2.20 2.60 6.12 6.64 8.90 9.79 12.46 14.08 10.05 10.10 0.053 0.05 4.22 3.89 5.76 6.78 1.54 1.06 13.68 14.65 3.42 3.44 2.03 2.46 9.91 12.66 0.832 0.93 2.40 1.88 4.99 6.20 5.90 6.69 0.527 0.59 0.404 0.51 0.450 0.41 0.146 0.15 0.040 0.04 1.23 1.43 5.68 6.31 0.231 0.27 0.254 0.26 0.346 0.38 0.239 0.27 0.311 0.27 3.30 3.22 14.22 13.28 14.18 15.75 0.621 0.53 11.75 12.65 10.32 9.34 15.48 16.43 8.93 7.86 4.05 4.23 11.18 12.65 14.60 15.85 3.76 3.23 9.55 8.99 12.06 11.54 2.00 1.69 11.88 12.07 7.17 7.53 14.54 14.75 5.47 6.34 5.70 5.03 9.69 9.43 0.034 0.03 9.50 9.03 10.35 9.54 0.468 0.44 14.69 15.86 2.57 2.15 1.29 1.22 2.12 1.98 0.061 0.06 12.52 14.54 10.29 12.04 3.42 2.99 1.94 2.04 1.06 0.98 4.61 4.23 3.49 3.22 12.52 14.35 1.29 1.32 6.18 7.12 ; run;
... View more