Steve, I ran your 2 proposed models and compare with a Negative Binomial random model using weight statement(=inverse variance) and a NB random model with type=simple. Note: I updated the number of fixed variance parameters. 1 - Model with weight (inverse variance) proc glimmix data=count_data /*empirical*/; class study; model tox = / dist=nb link=log offset=logPA2 solution; random intercept / subject=study ; weight inv_varln; where groupe=1; run; -2 Res Log Pseudo-Likelihood 29.74 Generalized Chi-Square 16.87 Gener. Chi-Square / DF 0.99 Covariance Parameter Estimates Standard Cov Parm Subject Estimate Error Intercept study 0.2245 0.1309 Scale 0.8371 1.8751 Solutions for Fixed Effects Standard Effect Estimate Error DF t Value Pr > |t| Intercept -2.6600 0.1244 17 -21.38 <.0001 2 - random Model fixing variance covariance (R) proc glimmix data=count_data; class study; model tox = / dist=nb link=log offset=logPA2 solution; random intercept / subject=study; random _residual_ / subject=study group=stud y type=simple; parms (0) (0.125) (0.333) (0.031) (0.2) (0.0625) (0.0169) (0.005) (0.007) (0.055) (0.0476) (0.083) (0.033) (0.1) (0.0625) (0.0212) (0.025) (0.0625) (0.0169) (0.0060) / hold=(2 to 19); where groupe=1; run; -2 Res Log Pseudo-Likelihood 29.74 Generalized Chi-Square 16.87 Gener. Chi-Square / DF 0.99 Covariance Parameter Estimates Standard Cov Parm Subject Group Estimate Error Intercept study 0.2244 0.1308 Residual (VC) study study 1 0.1250 . Residual (VC) study study 2 0.3330 . Residual (VC) study study 3 0.03100 . Residual (VC) study study 4 0.2000 . Residual (VC) study study 5 0.06250 . Residual (VC) study study 6 0.01690 . Residual (VC) study study 7 0.005000 . Residual (VC) study study 8 0.007000 . Residual (VC) study study 9 0.05500 . Residual (VC) study study 10 0.04760 . Residual (VC) study study 11 0.08300 . Residual (VC) study study 12 0.03300 . Residual (VC) study study 13 0.1000 . Residual (VC) study study 14 0.06250 . Residual (VC) study study 15 0.02120 . Residual (VC) study study 16 0.02500 . Residual (VC) study study 17 0.06250 . Residual (VC) study study 21 0.01690 . Scale 0.8399 1.8777 Solutions for Fixed Effects Standard Effect Estimate Error DF t Value Pr > |t| Intercept -2.6600 0.1244 17 -21.38 <.0001 3 - Model with no random effect and type=chol(1) for matrix R proc glimmix data=count_data; class study; model tox = / dist=nb link=log offset=logPA2 solution; random intercept/subject=study group=study type=chol(1); parms (0.125) (0.333) (0.031) (0.2) (0.0625) (0.0169) (0.005) (0.007) (0.055) (0.0476) (0.083) (0.033) (0.1) (0.0625) (0.0212) (0.025) (0.0625) (0.0169) (0.0060) / hold=(1 to 19); where groupe=1; run; -2 Res Log Pseudo-Likelihood 99.51 Generalized Chi-Square 113.25 Gener. Chi-Square / DF 6.66 Covariance Parameter Estimates Standard Cov Parm Subject Group Estimate Error CHOL(1,1) study study 1 0.1250 . CHOL(1,1) study study 2 0.3330 . CHOL(1,1) study study 3 0.03100 . CHOL(1,1) study study 4 0.2000 . CHOL(1,1) study study 5 0.06250 . CHOL(1,1) study study 6 0.01690 . CHOL(1,1) study study 7 0.005000 . CHOL(1,1) study study 8 0.007000 . CHOL(1,1) study study 9 0.05500 . CHOL(1,1) study study 10 0.04760 . CHOL(1,1) study study 11 0.08300 . CHOL(1,1) study study 12 0.03300 . CHOL(1,1) study study 13 0.1000 . CHOL(1,1) study study 14 0.06250 . CHOL(1,1) study study 15 0.02120 . CHOL(1,1) study study 16 0.02500 . CHOL(1,1) study study 17 0.06250 . CHOL(1,1) study study 21 0.01690 . Scale 0.006000 . Solutions for Fixed Effects Standard Effect Estimate Error DF t Value Pr > |t| Intercept -2.7003 0.04557 17 -59.26 <.0001 4 - random Model and type=chol(1) for R matrix proc glimmix data=count_data; class study; model tox = / dist=nb link=log offset=logPA2 solution; random intercept/subject=study; random intercept/subject=study group=study type=chol(1); parms (0) (0.125) (0.333) (0.031) (0.2) (0.0625) (0.0169) (0.005) (0.007) (0.055) (0.0476) (0.083) (0.033) (0.1) (0.0625) (0.0212) (0.025) (0.0625) (0.0169) (0.0060) / hold=(2 to 19); where groupe=1; run; -2 Res Log Pseudo-Likelihood 29.73 Generalized Chi-Square 16.89 Gener. Chi-Square / DF 0.99 Covariance Parameter Estimates Standard Cov Parm Subject Group Estimate Error Intercept study 0.1043 . CHOL(1,1) study study 1 0.1250 . CHOL(1,1) study study 2 0.3330 . CHOL(1,1) study study 3 0.03100 . CHOL(1,1) study study 4 0.2000 . CHOL(1,1) study study 5 0.06250 . CHOL(1,1) study study 6 0.01690 . CHOL(1,1) study study 7 0.005000 . CHOL(1,1) study study 8 0.007000 . CHOL(1,1) study study 9 0.05500 . CHOL(1,1) study study 10 0.04760 . CHOL(1,1) study study 11 0.08300 . CHOL(1,1) study study 12 0.03300 . CHOL(1,1) study study 13 0.1000 . CHOL(1,1) study study 14 0.06250 . CHOL(1,1) study study 15 0.02120 . CHOL(1,1) study study 16 0.02500 . CHOL(1,1) study study 17 0.06250 . CHOL(1,1) study study 21 0.01690 . Scale 0.1103 0.09373 Solutions for Fixed Effects Standard Effect Estimate Error DF t Value Pr > |t| Intercept -2.6504 0.1239 0 -21.39 . The random model with weight statement (model 1) and the random model with type=simple (model 2) give similar results. Note: When I use a poisson model the scale parameter is not defined. I need to insert a random _residual_ while scale parameter estimation is by default with Negative binomial. The last 3 models give a Pearson/df close to 1 (control of overdispersion). The model 3 indicates the need to adjust for overdispersion chiSquare/df=6.66 (>>1).But I realize I make a mistake because I wrongly fixed the parm hold=(1 to 19) leading to fix the scale parameter. The model 4 (random effect type=chol(1)) give no SE estimation for random effect and DF=0 for fixed effect. How explain it ? Very strange. Thank per advance for you help. Gwénaël
... View more