Thank you very much for the response, StatDave. I appreciate the guidance. Unfortunately, I'm not really sure how to account for the sparse data issue in a manner that preserves the intention of the analysis. We are attempting to hone in on, specifically, each of the 10 time points (since the 11th is our reference beginning point) and their proportion of "successes" in the dichotomous outcome, out of total responses. It is pertinent that we ideally preserve the separate time points as much as possible, or at the very least find an effective manner to condense them into blocks (e.g. "beginning", "middle", and "end", that end up with 3/3/4 time points in each respective block). Given that our outcome variable is binary, I'm not sure how to effectively merge time points while preserving integrity of the analysis (e.g. if an observation has 0/1/0 in the "beginning" block, it wouldn't really be appropriate to umbrella it into either values of "0" or "1"). The only solution to our problem and research goals that I can see is to do a Poisson or Negative Binomial Regression Analysis by transforming our outcome variable into count data. Since we are concerned about the proportion of successes at each particular time point, the only way I could see to model this would be to sum all of the total successes at each time point and model them as a proportion of total observations at each time point (successes/total non-missing per time point). However, my initial attempts at this analysis are showing that my specified model is saturated and is a poor fit. I can/will post some of my coding attempts to paint a better picture of what I'm asking, but in the meantime - do you have any thoughts or advice on my interpretation and attempt to proceed? Any guidance would be very graciously appreciated. Best, Luke
... View more