Hello From past few days I am dealing with skincare data which i have also given in datelines. First Data consists ‘16’ skincare products over ‘5’ categorical variables; second data shows the preferences of six persons for these 16 skincare products. Order of preferences is monotonic, when small data values mean high preference. I applied non-metric conjoint analysis technique, i got 'SAS-output' which are totally different than what I got from other software. I suspect something is wrong in syntax/sas codes, i have written. Please give me suggestion. title 'Nonmetric Conjoint Analysis of skin-care '; proc format; value FragranceF 1 = 'Masculine' 2 = 'Mild ' 3 = 'None '; value PackingF 1 = 'Jar ' 2 = 'Tube ' 3 = 'Bottle'; value AddedfeatureF 1 = 'Fairness ' 2 = 'Antiaging' 3 = 'Medicated'; value PriceF 1 = 'Less than 100Rs ' 2 = '100 RS to 200 Rs' 3 = 'Morethan 300 Rs '; Value TextureF 1 = 'Cream ' 2 = 'Gel ' 3 = 'Lotion'; run; data skincare; input Fragrance Packing Addedfeature Price Texture; format Fragrance FragranceF9. Packing PackingF6. Addedfeature AddedfeatureF9. Price PriceF15. Texture TextureF5. ; datalines; 2 2 2 2 1 2 1 3 1 3 1 2 3 1 2 3 3 3 3 1 1 1 1 1 1 1 1 2 3 1 3 1 2 1 3 1 3 1 2 3 1 3 2 1 2 2 3 1 1 1 3 1 1 2 2 2 1 1 3 2 1 1 3 2 1 3 2 1 1 1 1 1 1 1 1 1 2 1 3 3 ; run; title 'Skincare data entry'; data Results; input sub01 sub02 sub03 sub04 sub05 sub06 ; datalines; 05 02 13 05 11 01 04 14 04 08 01 16 12 08 16 01 07 02 03 10 15 07 02 13 09 07 05 06 12 15 13 12 14 10 10 14 08 13 02 09 09 12 11 15 03 16 08 11 10 05 11 04 13 10 01 03 06 11 14 09 02 04 12 03 15 06 14 11 07 02 16 07 06 09 09 13 06 05 16 01 08 12 05 08 07 06 10 14 03 04 15 16 01 15 04 03 ; run; title " Merge both data"; data Both; merge work.skincare Results; run; proc print; title 'Data Set for Conjoint Analysis'; run; title 'skincare Study, Individual Conjoint Analyses'; proc transreg data=Both maxiter=330 utilities short outtest=Utils separators=' '; ods select TestsNote ConvergenceStatus FitStatistics Utilities; model monotone(sub01 sub02 sub03 sub04 sub05 sub06/ reflect ) = class(Fragrance Packing Addedfeature Price Texture / zero=sum); output ireplace predicted; run; proc print label; var Rank TRank PRank Fragrance Packing Addedfeature Price Texture; label PRank = 'Predicted Ranks'; run; data Importance; set Utils(keep=_depvar_ Importance Label); if n(Importance); label = substr(label, 1, index(label, ' ')); run; proc transpose data=work.importance out=Importance2(drop=_:); by _depvar_; id Label; run; proc print; title2 'Importance Values'; run; proc means; title2 'Average Importance'; run; data Utilities; set Utils(keep=_depvar_ Coefficient Label); if n(Coefficient); run; proc transpose data=work.utilities out=Utilities2(drop=_:); by _depvar_; id Label; idlabel Label; run; proc print label; title2 'Utilities'; run;
... View more