Thank you for your reply!
First of all, I would like to answer my own question that was raised a few days ago (so that other users of the Community can save their time on looking up information): diagnostics of collinearity should precede the variable selection process. I looked up a book on multivariate statistics and referred to the part on collinearity (of multivariate linear regression), it said (original text not in English): "Multicollinearity (an alias of collinearity) is the distortion of the model estimation or inability of accurate estimation caused by the precise correlation of or the fact that strong correlation exists among the covariates (can be interpreted as "independent variables" in this setting) in the linear regression model. Therefore, prior to regression, knowing the relationship among the covariates is of great importance". The text I translated clear pointed out that diagnostics of collinearity should precede the variable selection process. I also consulted one of my teachers responsible for teaching us SAS. She also stated that diagnostics of collinearity should precede the variable selection process.
As for the reason underlying my failure to diminish collinearity, I myself searched for an answer after raising my question. You mentioned that an inappropriate setting of dummy variables may be one of the underlying causes of the problem. I am gratitude for your pointing out that issue (so I will never make such a mistake in my upcoming data analysis), but unfortunately this was not the case in my problem.
I read the note you had mentioned again and noticed that the underlying cause of collinearity between the independent variable and the intercept is the disproportionally small standard deviation of the variable that exhibit collinearity with the intercept. I reviewed my model and found out that I put one continuous independent variable alongside dummy variables in the model (the reason why I did so was that compared with other variables, the range of the continuous variable is relatively small, so in order to retain more information of my data, I put the continuous variable directly in the model) and that the mean of other independent variables (dummy variables) are close to 0.5, with their standard deviation ranging from 0.5-0.6. However, the continuous variable had a mean of around 6 and a standard deviation of around 1. The standard deviation of the continuous variable was smaller than its mean while the standard deviations of the discrete (dummy) variables were larger than their means. In other words, compared with the other independent variables, the standard deviation of the continuous variable was disproportionally small.
In the first place, I tackled the problem by standardizing all the variables into the variables with 1 as their standard deviation (just like the case the note you referred). However, the largest condition index computed from the weighted information matrix was 11 prior to variable standardization (the second largest was 8, so there is no need to concern about that); the largest condition index computed from the weighted information matrix was 12 after variable standardization, with the very same variable still exhibiting collinearity with the intercept and that no collinearity was observed when intercept was removed from analysis. In other words, using 1 as the standard deviation in PROC STANDARD did not help to reduce collinearity at all.
I decided to try several different standard deviations in PROC STANDARD. First, I tried 0.5, producing even more severe collinearity (the largest condition index computed from the weighted information matrix was 29). Then, I tried 3. This time, collinearity disappeared.
So, in conclusion, choosing the right standard deviation in PROC STANDARD is of vital importance in dealing with collinearity with the variable standardization method. One should not choose the standard deviation in PROC STANDARD arbitrarily, i.e. without observing the exact number of the statistics.
... View more