Several things to think about. First of all, you can directly compare LOGISTIC and GLIMMIX. Just take out the random statement from GLIMMIX and run. You should get the same results for the two procedures (intercept and coefficients). Second, in your reply to Steve, you said you thought you used quadrature, but your code does not show this. With random effects and binary data, it is critical that you use quadrature (method=quad), because the default RSPL (linearization) method can be very biased in this circumstance. The bias diminishes rapidly for binomial data as the number of trials per experimental unit goes up (but your data at 0:1, a trial size of 1). There can still be bias with quadrature, but much less so. Often, it is impossible to use quadrature because of memory/time constraints, as described in the user's guide, but try it as your first choice. If quadrature is not allowed, then use method=laplace. (These options won't affect your results when you remove the random statement, since these apply to models with random effects). Third, your reply suggests that you have convergence problems (you mentioned nonexistence of a convergence point??? Not sure what you mean). This can drastically affect your results. Are you getting convergence? What is the estimated variance (and its SE)? My thoughts about decreasing intercept were more related to the situation where the covariates are not centered. Think of two covariates, x1 and x2. If only x1 is in the model, then the interecept is the expected response when x1=0; but x2 could be anything. Crudely, you are getting the expected response when x2 is at its center ((it is more complex than this, based on correlations of the x's and other things). The intercept would not represent the situation with x1=x2=0. Now, if you add x2, the intercept is the expected response when x1=x2=0 (with x3, x4, ... being anything). As you add x's, you are pulling the intercept towards a global x1=x2=x3=...=0 case. I think this could get more complicated with a mixture of positive and negative correlations in the X matrix. But this is all likely off the point of your problem.
... View more