I was originally quite surprised by your results, so I generated a binary data set last night with two factors. I did not have your problem: I got identical chi-square results for GLIMMIX and GENMOD (I did not use LOGISTIC). Your problem is that you used LR based Type 3 testing in GENMOD and Wald (chi-squared or F) testing in GLIMMIX (at least that is what you showed). (Note that the F statistic is just a scaled Wald statistic). It is well known that LR and Wald tests can give different results. With very large sample sizes (depending on the complexity of the model, structure of the data, etc.), they can give the same results, but I would not assume this for most situations. Often they give reasonably close p values at moderate to large sample sizes, but there are exceptions. The Wald statistics work better at smaller n because LR is based on asymptotic properties of the test statistic. To get Wald type 3 statistics in GENMOD, add wald as an option on the model statement. You also made the following statement: "First, with dichotomous variables, I would expect the Type 3 F test statistic to simply be the parameter t statistic squared, as the F stat has 1 num df and the same denom df as the t stat.". This is not true, in general, but it is an easy misunderstanding to have. For a simple regression problem, where binary variable is not an indicator for the factor level, the square of the t statistic (est./se) is the F Wald statistic. But it is a different situation when the binary variables are being used to give the expected values or other estimable functions for levels of a factor (especially in a factorial). With a factorial, the test statistic for the main effect of A involves more than just the A parameters. In particular, the main effect mean for A1 is based on a linear combination of A1, the average of the B terms, and the average of the interaction terms that involve A1. So, the type 3 test statistics are based on more complicated contrasts than you are supposing. To see this, add the e option to the model statement in GLIMMIX to see the coefficients used for generating the tests of A, B, and A*B. You can see these involve more than just single terms for the main effects. One final note. Although this is not affecting your results at all (I don't think at this point), you are using different parametrizations for the class variables in GLIMMIX compared to the others. That is, GLIMMIX only uses the so-called GLM parameterization, where there is always a 0 for the last level. You have no choice for this procedure. The reference parametrization is slightly different, which you elected to use for the other two procedures. Here, there is one less level for each factor. The GENMOD documentation describes the many different ways of parameterizing factors with the CLASS statement. This won't affect your global type 3 results, but it is important to be aware of the differences.The developers of linear model procedures going back to the 1970s have made it clear why they favor the "GLM" parameterization. That is why you only find this in GLM, MIXED, and GLIMMIX.
... View more