The SE of a difference is more complex than you think when variables are correlated. By definition, with a random block effect and a nonzero block variance, your means are correlated. The variance of a difference of two means is, in general: var(mu1-m2) = var(mu1) + var(mu2) - 2*cov(mu1,mu2) SE(mu1-mu2) is just the square root of this, and var(mu1), etc., are the squares of the individual SEs. You probably have a very large block variance. Ignoring the repeated measures, the covariance of any two randomly selected observations in the same block have a covariance equal to the block variance. Taking out the block variance is moving some of the total variability into the indiviudal mean SEs. You don't want this because it gives an incorrect measure of the uncertainty of the mean estimates (not taking design into account). Put in covb and corrb as options in the model statement to see the var-covariance matrix of the parameter estimates.
... View more