Dear Community,
I have troubles in using PROC MIXED OR PROC GLIMMIXED. My experiment consist of 12 control and 12 diseased animals (group factor). Cultured cells from each animal are treated with 4 compounds (repeated measures factor) and the measure of a signal is replicated 5 times (repeated measures factor).
I would like to test for group effect and compound effect and possibly their interaction taking into account the nested repeated measures nature of the experiment.
I also have a similar experiment where the numeber of animals and the number is variable as regard the group, the compound end the replicates.
Thanks for your help
You can, but be sure to include the random statements as in the current model, especially the group=group*compound option to deal with the heterogeneity of variance issue. I don't know why you would drop it, though. It is a known design factor, the F tests, lsmeans and lsmean difference p values for tests of group, compound and group by compound are no different, and you get some insight into which whole plot factors have the largest effect on the repeat to repeat variability.
SteveDenham
If your response variable is continuous, you can fit a Kronecker product in the REPEATED statement of PROC MIXED. See the short example here .
For GLIMMIX, multivariate repeated measures are not so simple. See my reply in this thread https://communities.sas.com/t5/Statistical-Procedures/repeated-measures-in-glimmix/td-p/128310 or here https://communities.sas.com/t5/Statistical-Procedures/Doubly-repeated-measures-with-GLIMMIX/td-p/116...
The latter is an incomplete version of this fantastic blog by the Ontario Agriculture College's statistical support group:
https://oacstats.blog/2018/04/23/ridgetown-workshop-repeated-measures-adding-year-location/
This gives code for a doubly repeated measures analysis in GLIMMIX.
SteveDenham
Well, in some sense, things worked (convergence is good), but the thing to notice here is that you aren't fitting 'repeat' in the model. Give this a try:
PROC GLIMMIX DATA=mydata PLOTS=ALL ;
CLASS animal group compound repeat ;
MODEL signal = group|compound|repeat ;
RANDOM intercept / SUBJECT=animal group=compound ;
RANDOM repeat / SUBJECT=animal residual TYPE=cs ;
LSMEANS group|compound / CL ;
RUN;
I still feel that this is missing something from the OAC reference, as you don't have a factor equivalent to their 'rep' variable, so I am not sure if the first RANDOM statement will do what is needed.. I might be missing what the experimental unit is in this case. I think 'animal' is a block equivalent to 'rep' in the OAC, in which case you should have some variable ID'ing what was sampled from the animal. The more I think about this, that would be 'compound' so you have confounding of compound with the experimental unit. I definitely feel like I am missing a key element in the design.
SteveDenham
Here my design and my data: 12 diseased (D) animals and 12 controls (ctrl) are assigned to receive all of 4 compounds (first repeated factor) and there is a signal measured 5 times for each coumpound on each animal (second repeated factor, but I'm not interested in this effect).
Group | Compound | Animal | Repeat | Signal |
D | 1 | D1 | 1 | 299092 |
D | 1 | D1 | 2 | 280073 |
D | 1 | D1 | 3 | 239451 |
D | 1 | D1 | 4 | 256468 |
D | 1 | D1 | 5 | 285194 |
D | 1+2 | D1 | 1 | 348124 |
D | 1+2 | D1 | 2 | 336914 |
D | 1+2 | D1 | 3 | 369524 |
D | 1+2 | D1 | 4 | 307687 |
D | 1+2 | D1 | 5 | 316932 |
D | 1+2+3 | D1 | 1 | 358802 |
D | 1+2+3 | D1 | 2 | 389635 |
D | 1+2+3 | D1 | 3 | 397721 |
D | 1+2+3 | D1 | 4 | 418724 |
D | 1+2+3 | D1 | 5 | 420941 |
D | 1+3 | D1 | 1 | 415534 |
D | 1+3 | D1 | 2 | 371207 |
D | 1+3 | D1 | 3 | 384587 |
D | 1+3 | D1 | 4 | 428517 |
D | 1+3 | D1 | 5 | 415308 |
D | 1 | D2 | 1 | 451305 |
D | 1 | D2 | 2 | 442801 |
D | 1 | D2 | 3 | 481227 |
D | 1 | D2 | 4 | 413664 |
D | 1 | D2 | 5 | 430914 |
D | 1+2 | D2 | 1 | 278262 |
D | 1+2 | D2 | 2 | 286955 |
D | 1+2 | D2 | 3 | 226982 |
D | 1+2 | D2 | 4 | 258981 |
D | 1+2 | D2 | 5 | 268785 |
D | 1+2+3 | D2 | 1 | 236513 |
D | 1+2+3 | D2 | 2 | 210532 |
D | 1+2+3 | D2 | 3 | 156137 |
D | 1+2+3 | D2 | 4 | 119717 |
D | 1+2+3 | D2 | 5 | 151279 |
D | 1+3 | D2 | 1 | 538222 |
D | 1+3 | D2 | 2 | 529583 |
D | 1+3 | D2 | 3 | 517925 |
D | 1+3 | D2 | 4 | 532973 |
D | 1+3 | D2 | 5 | 530916 |
D | 1 | D3 | 1 | 496014 |
D | 1 | D3 | 2 | 419344 |
D | 1 | D3 | 3 | 468740 |
D | 1 | D3 | 4 | 470809 |
D | 1 | D3 | 5 | 484953 |
D | 1+2 | D3 | 1 | 712583 |
D | 1+2 | D3 | 2 | 634273 |
D | 1+2 | D3 | 3 | 654884 |
D | 1+2 | D3 | 4 | 664783 |
D | 1+2 | D3 | 5 | 676842 |
D | 1+2+3 | D3 | 1 | 456312 |
D | 1+2+3 | D3 | 2 | 424410 |
D | 1+2+3 | D3 | 3 | 440612 |
D | 1+2+3 | D3 | 4 | 416622 |
D | 1+2+3 | D3 | 5 | 438208 |
D | 1+3 | D3 | 1 | 693942 |
D | 1+3 | D3 | 2 | 691170 |
D | 1+3 | D3 | 3 | 629976 |
D | 1+3 | D3 | 4 | 698913 |
D | 1+3 | D3 | 5 | 769643 |
D | 1 | D4 | 1 | 427913 |
D | 1 | D4 | 2 | 419932 |
D | 1 | D4 | 3 | 397815 |
D | 1 | D4 | 4 | 399724 |
D | 1 | D4 | 5 | 399517 |
D | 1+2 | D4 | 1 | 511499 |
D | 1+2 | D4 | 2 | 460973 |
D | 1+2 | D4 | 3 | 422244 |
D | 1+2 | D4 | 4 | 559974 |
D | 1+2 | D4 | 5 | 518275 |
D | 1+2+3 | D4 | 1 | 448751 |
D | 1+2+3 | D4 | 2 | 375320 |
D | 1+2+3 | D4 | 3 | 417325 |
D | 1+2+3 | D4 | 4 | 327513 |
D | 1+2+3 | D4 | 5 | 327415 |
D | 1+3 | D4 | 1 | 598966 |
D | 1+3 | D4 | 2 | 593115 |
D | 1+3 | D4 | 3 | 537046 |
D | 1+3 | D4 | 4 | 588924 |
D | 1+3 | D4 | 5 | 568589 |
D | 1 | D5 | 1 | 452302 |
D | 1 | D5 | 2 | 295407 |
D | 1 | D5 | 3 | 443580 |
D | 1 | D5 | 4 | 380202 |
D | 1 | D5 | 5 | 342135 |
D | 1+2 | D5 | 1 | 526964 |
D | 1+2 | D5 | 2 | 513785 |
D | 1+2 | D5 | 3 | 485871 |
D | 1+2 | D5 | 4 | 493392 |
D | 1+2 | D5 | 5 | 428953 |
D | 1+2+3 | D5 | 1 | 290895 |
D | 1+2+3 | D5 | 2 | 304773 |
D | 1+2+3 | D5 | 3 | 233861 |
D | 1+2+3 | D5 | 4 | 239263 |
D | 1+2+3 | D5 | 5 | 204572 |
D | 1+3 | D5 | 1 | 561195 |
D | 1+3 | D5 | 2 | 563376 |
D | 1+3 | D5 | 3 | 552295 |
D | 1+3 | D5 | 4 | 542625 |
D | 1+3 | D5 | 5 | 550423 |
D | 1 | D6 | 1 | 151525 |
D | 1 | D6 | 2 | 140694 |
D | 1 | D6 | 3 | 151348 |
D | 1 | D6 | 4 | 140498 |
D | 1 | D6 | 5 | 132310 |
D | 1+2 | D6 | 1 | 324575 |
D | 1+2 | D6 | 2 | 323197 |
D | 1+2 | D6 | 3 | 316585 |
D | 1+2 | D6 | 4 | 284173 |
D | 1+2 | D6 | 5 | 312782 |
D | 1+2+3 | D6 | 1 | 123533 |
D | 1+2+3 | D6 | 2 | 121773 |
D | 1+2+3 | D6 | 3 | 121476 |
D | 1+2+3 | D6 | 4 | 120766 |
D | 1+2+3 | D6 | 5 | 121636 |
D | 1+3 | D6 | 1 | 314985 |
D | 1+3 | D6 | 2 | 309984 |
D | 1+3 | D6 | 3 | 288682 |
D | 1+3 | D6 | 4 | 295393 |
D | 1+3 | D6 | 5 | 285891 |
D | 1 | D7 | 1 | 231758 |
D | 1 | D7 | 2 | 238973 |
D | 1 | D7 | 3 | 252995 |
D | 1 | D7 | 4 | 184888 |
D | 1 | D7 | 5 | 203697 |
D | 1+2 | D7 | 1 | 150338 |
D | 1+2 | D7 | 2 | 143496 |
D | 1+2 | D7 | 3 | 143558 |
D | 1+2 | D7 | 4 | 140278 |
D | 1+2 | D7 | 5 | 140189 |
D | 1+2+3 | D7 | 1 | 237055 |
D | 1+2+3 | D7 | 2 | 260468 |
D | 1+2+3 | D7 | 3 | 247947 |
D | 1+2+3 | D7 | 4 | 241240 |
D | 1+2+3 | D7 | 5 | 217081 |
D | 1+3 | D7 | 1 | 229403 |
D | 1+3 | D7 | 2 | 216481 |
D | 1+3 | D7 | 3 | 198361 |
D | 1+3 | D7 | 4 | 207942 |
D | 1+3 | D7 | 5 | 217733 |
D | 1 | D8 | 1 | 528971 |
D | 1 | D8 | 2 | 493396 |
D | 1 | D8 | 3 | 498951 |
D | 1 | D8 | 4 | 480924 |
D | 1 | D8 | 5 | 497756 |
D | 1+2 | D8 | 1 | 500988 |
D | 1+2 | D8 | 2 | 352342 |
D | 1+2 | D8 | 3 | 434887 |
D | 1+2 | D8 | 4 | 402875 |
D | 1+2 | D8 | 5 | 370769 |
D | 1+2+3 | D8 | 1 | 418733 |
D | 1+2+3 | D8 | 2 | 539952 |
D | 1+2+3 | D8 | 3 | 482380 |
D | 1+2+3 | D8 | 4 | 526684 |
D | 1+2+3 | D8 | 5 | 504143 |
D | 1+3 | D8 | 1 | 513150 |
D | 1+3 | D8 | 2 | 571970 |
D | 1+3 | D8 | 3 | 550684 |
D | 1+3 | D8 | 4 | 511224 |
D | 1+3 | D8 | 5 | 518795 |
D | 1 | D9 | 1 | 254832 |
D | 1 | D9 | 2 | 234697 |
D | 1 | D9 | 3 | 211593 |
D | 1 | D9 | 4 | 242894 |
D | 1 | D9 | 5 | 225680 |
D | 1+2 | D9 | 1 | 69043 |
D | 1+2 | D9 | 2 | 75423 |
D | 1+2 | D9 | 3 | 70081 |
D | 1+2 | D9 | 4 | 70284 |
D | 1+2 | D9 | 5 | 71052 |
D | 1+2+3 | D9 | 1 | 49326 |
D | 1+2+3 | D9 | 2 | 51262 |
D | 1+2+3 | D9 | 3 | 43746 |
D | 1+2+3 | D9 | 4 | 45299 |
D | 1+2+3 | D9 | 5 | 46240 |
D | 1+3 | D9 | 1 | 168523 |
D | 1+3 | D9 | 2 | 172344 |
D | 1+3 | D9 | 3 | 167297 |
D | 1+3 | D9 | 4 | 169445 |
D | 1+3 | D9 | 5 | 167032 |
D | 1 | D10 | 1 | 152369 |
D | 1 | D10 | 2 | 148473 |
D | 1 | D10 | 3 | 136721 |
D | 1 | D10 | 4 | 150212 |
D | 1 | D10 | 5 | 145133 |
D | 1+2 | D10 | 1 | 223495 |
D | 1+2 | D10 | 2 | 256362 |
D | 1+2 | D10 | 3 | 313593 |
D | 1+2 | D10 | 4 | 226295 |
D | 1+2 | D10 | 5 | 219989 |
D | 1+2+3 | D10 | 1 | 338262 |
D | 1+2+3 | D10 | 2 | 293914 |
D | 1+2+3 | D10 | 3 | 247747 |
D | 1+2+3 | D10 | 4 | 285989 |
D | 1+2+3 | D10 | 5 | 269962 |
D | 1+3 | D10 | 1 | 223514 |
D | 1+3 | D10 | 2 | 192321 |
D | 1+3 | D10 | 3 | 225333 |
D | 1+3 | D10 | 4 | 221425 |
D | 1+3 | D10 | 5 | 166638 |
D | 1 | D11 | 1 | 258947 |
D | 1 | D11 | 2 | 238768 |
D | 1 | D11 | 3 | 210975 |
D | 1 | D11 | 4 | 248985 |
D | 1 | D11 | 5 | 231799 |
D | 1+2 | D11 | 1 | 274832 |
D | 1+2 | D11 | 2 | 282496 |
D | 1+2 | D11 | 3 | 253349 |
D | 1+2 | D11 | 4 | 249934 |
D | 1+2 | D11 | 5 | 269321 |
D | 1+2+3 | D11 | 1 | 649398 |
D | 1+2+3 | D11 | 2 | 558776 |
D | 1+2+3 | D11 | 3 | 572953 |
D | 1+2+3 | D11 | 4 | 613874 |
D | 1+2+3 | D11 | 5 | 649631 |
D | 1+3 | D11 | 1 | 355945 |
D | 1+3 | D11 | 2 | 387984 |
D | 1+3 | D11 | 3 | 326617 |
D | 1+3 | D11 | 4 | 328583 |
D | 1+3 | D11 | 5 | 331750 |
D | 1 | D12 | 1 | 325151 |
D | 1 | D12 | 2 | 296417 |
D | 1 | D12 | 3 | 250726 |
D | 1 | D12 | 4 | 308349 |
D | 1 | D12 | 5 | 248071 |
D | 1+2 | D12 | 1 | 163460 |
D | 1+2 | D12 | 2 | 148729 |
D | 1+2 | D12 | 3 | 159533 |
D | 1+2 | D12 | 4 | 139568 |
D | 1+2 | D12 | 5 | 151676 |
D | 1+2+3 | D12 | 1 | 79323 |
D | 1+2+3 | D12 | 2 | 76269 |
D | 1+2+3 | D12 | 3 | 78035 |
D | 1+2+3 | D12 | 4 | 75395 |
D | 1+2+3 | D12 | 5 | 78143 |
D | 1+3 | D12 | 1 | 626971 |
D | 1+3 | D12 | 2 | 553892 |
D | 1+3 | D12 | 3 | 594874 |
D | 1+3 | D12 | 4 | 570093 |
D | 1+3 | D12 | 5 | 586996 |
ctrl | 1 | C1 | 1 | 86962 |
ctrl | 1 | C1 | 2 | 78238 |
ctrl | 1 | C1 | 3 | 73522 |
ctrl | 1 | C1 | 4 | 73355 |
ctrl | 1 | C1 | 5 | 69748 |
ctrl | 1+2 | C1 | 1 | 98594 |
ctrl | 1+2 | C1 | 2 | 137487 |
ctrl | 1+2 | C1 | 3 | 124254 |
ctrl | 1+2 | C1 | 4 | 158471 |
ctrl | 1+2 | C1 | 5 | 92564 |
ctrl | 1+2+3 | C1 | 1 | 66288 |
ctrl | 1+2+3 | C1 | 2 | 59785 |
ctrl | 1+2+3 | C1 | 3 | 52898 |
ctrl | 1+2+3 | C1 | 4 | 47599 |
ctrl | 1+2+3 | C1 | 5 | 49859 |
ctrl | 1+3 | C1 | 1 | 62148 |
ctrl | 1+3 | C1 | 2 | 71232 |
ctrl | 1+3 | C1 | 3 | 65424 |
ctrl | 1+3 | C1 | 4 | 59534 |
ctrl | 1+3 | C1 | 5 | 62532 |
ctrl | 1 | C2 | 1 | 91041 |
ctrl | 1 | C2 | 2 | 93555 |
ctrl | 1 | C2 | 3 | 93478 |
ctrl | 1 | C2 | 4 | 89325 |
ctrl | 1 | C2 | 5 | 92847 |
ctrl | 1+2 | C2 | 1 | 60630 |
ctrl | 1+2 | C2 | 2 | 59552 |
ctrl | 1+2 | C2 | 3 | 60105 |
ctrl | 1+2 | C2 | 4 | 61149 |
ctrl | 1+2 | C2 | 5 | 58308 |
ctrl | 1+2+3 | C2 | 1 | 83505 |
ctrl | 1+2+3 | C2 | 2 | 84301 |
ctrl | 1+2+3 | C2 | 3 | 83447 |
ctrl | 1+2+3 | C2 | 4 | 82376 |
ctrl | 1+2+3 | C2 | 5 | 84744 |
ctrl | 1+3 | C2 | 1 | 83488 |
ctrl | 1+3 | C2 | 2 | 80861 |
ctrl | 1+3 | C2 | 3 | 83690 |
ctrl | 1+3 | C2 | 4 | 83577 |
ctrl | 1+3 | C2 | 5 | 82614 |
ctrl | 1 | C3 | 1 | 130417 |
ctrl | 1 | C3 | 2 | 124647 |
ctrl | 1 | C3 | 3 | 130866 |
ctrl | 1 | C3 | 4 | 131894 |
ctrl | 1 | C3 | 5 | 129993 |
ctrl | 1+2 | C3 | 1 | 131093 |
ctrl | 1+2 | C3 | 2 | 128174 |
ctrl | 1+2 | C3 | 3 | 130239 |
ctrl | 1+2 | C3 | 4 | 130141 |
ctrl | 1+2 | C3 | 5 | 129516 |
ctrl | 1+2+3 | C3 | 1 | 127552 |
ctrl | 1+2+3 | C3 | 2 | 125519 |
ctrl | 1+2+3 | C3 | 3 | 126711 |
ctrl | 1+2+3 | C3 | 4 | 129848 |
ctrl | 1+2+3 | C3 | 5 | 129213 |
ctrl | 1+3 | C3 | 1 | 113537 |
ctrl | 1+3 | C3 | 2 | 121609 |
ctrl | 1+3 | C3 | 3 | 111941 |
ctrl | 1+3 | C3 | 4 | 111000 |
ctrl | 1+3 | C3 | 5 | 114276 |
ctrl | 1 | C4 | 1 | 22301 |
ctrl | 1 | C4 | 2 | 24102 |
ctrl | 1 | C4 | 3 | 19101 |
ctrl | 1 | C4 | 4 | 38211 |
ctrl | 1 | C4 | 5 | 37794 |
ctrl | 1+2 | C4 | 1 | 71477 |
ctrl | 1+2 | C4 | 2 | 67638 |
ctrl | 1+2 | C4 | 3 | 81357 |
ctrl | 1+2 | C4 | 4 | 47137 |
ctrl | 1+2 | C4 | 5 | 54535 |
ctrl | 1+2+3 | C4 | 1 | 42178 |
ctrl | 1+2+3 | C4 | 2 | 51847 |
ctrl | 1+2+3 | C4 | 3 | 39032 |
ctrl | 1+2+3 | C4 | 4 | 37201 |
ctrl | 1+2+3 | C4 | 5 | 37153 |
ctrl | 1+3 | C4 | 1 | 83592 |
ctrl | 1+3 | C4 | 2 | 77168 |
ctrl | 1+3 | C4 | 3 | 65752 |
ctrl | 1+3 | C4 | 4 | 73187 |
ctrl | 1+3 | C4 | 5 | 54966 |
ctrl | 1 | C5 | 1 | 12983 |
ctrl | 1 | C5 | 2 | 340907 |
ctrl | 1 | C5 | 3 | 114244 |
ctrl | 1 | C5 | 4 | 128359 |
ctrl | 1 | C5 | 5 | 18443 |
ctrl | 1+2 | C5 | 1 | 72999 |
ctrl | 1+2 | C5 | 2 | 54537 |
ctrl | 1+2 | C5 | 3 | 59254 |
ctrl | 1+2 | C5 | 4 | 38272 |
ctrl | 1+2 | C5 | 5 | 38254 |
ctrl | 1+2+3 | C5 | 1 | 82657 |
ctrl | 1+2+3 | C5 | 2 | 71214 |
ctrl | 1+2+3 | C5 | 3 | 52381 |
ctrl | 1+2+3 | C5 | 4 | 32244 |
ctrl | 1+2+3 | C5 | 5 | 48865 |
ctrl | 1+3 | C5 | 1 | 71562 |
ctrl | 1+3 | C5 | 2 | 64598 |
ctrl | 1+3 | C5 | 3 | 79327 |
ctrl | 1+3 | C5 | 4 | 38258 |
ctrl | 1+3 | C5 | 5 | 48368 |
ctrl | 1 | C6 | 1 | 63305 |
ctrl | 1 | C6 | 2 | 63293 |
ctrl | 1 | C6 | 3 | 64925 |
ctrl | 1 | C6 | 4 | 64381 |
ctrl | 1 | C6 | 5 | 66729 |
ctrl | 1+2 | C6 | 1 | 86144 |
ctrl | 1+2 | C6 | 2 | 83301 |
ctrl | 1+2 | C6 | 3 | 84701 |
ctrl | 1+2 | C6 | 4 | 87144 |
ctrl | 1+2 | C6 | 5 | 82177 |
ctrl | 1+2+3 | C6 | 1 | 98863 |
ctrl | 1+2+3 | C6 | 2 | 98377 |
ctrl | 1+2+3 | C6 | 3 | 100403 |
ctrl | 1+2+3 | C6 | 4 | 100291 |
ctrl | 1+2+3 | C6 | 5 | 100793 |
ctrl | 1+3 | C6 | 1 | 94011 |
ctrl | 1+3 | C6 | 2 | 86967 |
ctrl | 1+3 | C6 | 3 | 93922 |
ctrl | 1+3 | C6 | 4 | 92021 |
ctrl | 1+3 | C6 | 5 | 89911 |
ctrl | 1 | C7 | 1 | 119105 |
ctrl | 1 | C7 | 2 | 121940 |
ctrl | 1 | C7 | 3 | 116700 |
ctrl | 1 | C7 | 4 | 122114 |
ctrl | 1 | C7 | 5 | 115009 |
ctrl | 1+2 | C7 | 1 | 110396 |
ctrl | 1+2 | C7 | 2 | 115510 |
ctrl | 1+2 | C7 | 3 | 111504 |
ctrl | 1+2 | C7 | 4 | 110784 |
ctrl | 1+2 | C7 | 5 | 109219 |
ctrl | 1+2+3 | C7 | 1 | 196448 |
ctrl | 1+2+3 | C7 | 2 | 196720 |
ctrl | 1+2+3 | C7 | 3 | 197428 |
ctrl | 1+2+3 | C7 | 4 | 199719 |
ctrl | 1+2+3 | C7 | 5 | 192063 |
ctrl | 1+3 | C7 | 1 | 224785 |
ctrl | 1+3 | C7 | 2 | 225851 |
ctrl | 1+3 | C7 | 3 | 221603 |
ctrl | 1+3 | C7 | 4 | 220562 |
ctrl | 1+3 | C7 | 5 | 221109 |
ctrl | 1 | C8 | 1 | 89047 |
ctrl | 1 | C8 | 2 | 87179 |
ctrl | 1 | C8 | 3 | 87487 |
ctrl | 1 | C8 | 4 | 90849 |
ctrl | 1 | C8 | 5 | 88516 |
ctrl | 1+2 | C8 | 1 | 162359 |
ctrl | 1+2 | C8 | 2 | 156512 |
ctrl | 1+2 | C8 | 3 | 162665 |
ctrl | 1+2 | C8 | 4 | 168540 |
ctrl | 1+2 | C8 | 5 | 169213 |
ctrl | 1+2+3 | C8 | 1 | 79459 |
ctrl | 1+2+3 | C8 | 2 | 78650 |
ctrl | 1+2+3 | C8 | 3 | 79524 |
ctrl | 1+2+3 | C8 | 4 | 78989 |
ctrl | 1+2+3 | C8 | 5 | 79703 |
ctrl | 1+3 | C8 | 1 | 104540 |
ctrl | 1+3 | C8 | 2 | 99693 |
ctrl | 1+3 | C8 | 3 | 102779 |
ctrl | 1+3 | C8 | 4 | 101869 |
ctrl | 1+3 | C8 | 5 | 103001 |
ctrl | 1 | C9 | 1 | 82848 |
ctrl | 1 | C9 | 2 | 84812 |
ctrl | 1 | C9 | 3 | 83114 |
ctrl | 1 | C9 | 4 | 85284 |
ctrl | 1 | C9 | 5 | 82324 |
ctrl | 1+2 | C9 | 1 | 68911 |
ctrl | 1+2 | C9 | 2 | 67781 |
ctrl | 1+2 | C9 | 3 | 69592 |
ctrl | 1+2 | C9 | 4 | 67487 |
ctrl | 1+2 | C9 | 5 | 68789 |
ctrl | 1+2+3 | C9 | 1 | 73284 |
ctrl | 1+2+3 | C9 | 2 | 75162 |
ctrl | 1+2+3 | C9 | 3 | 73766 |
ctrl | 1+2+3 | C9 | 4 | 74591 |
ctrl | 1+2+3 | C9 | 5 | 75591 |
ctrl | 1+3 | C9 | 1 | 50998 |
ctrl | 1+3 | C9 | 2 | 49504 |
ctrl | 1+3 | C9 | 3 | 51023 |
ctrl | 1+3 | C9 | 4 | 50558 |
ctrl | 1+3 | C9 | 5 | 50159 |
ctrl | 1 | C10 | 1 | 92934 |
ctrl | 1 | C10 | 2 | 96397 |
ctrl | 1 | C10 | 3 | 100353 |
ctrl | 1 | C10 | 4 | 97318 |
ctrl | 1 | C10 | 5 | 92684 |
ctrl | 1+2 | C10 | 1 | 175796 |
ctrl | 1+2 | C10 | 2 | 175960 |
ctrl | 1+2 | C10 | 3 | 177130 |
ctrl | 1+2 | C10 | 4 | 176969 |
ctrl | 1+2 | C10 | 5 | 172057 |
ctrl | 1+2+3 | C10 | 1 | 299139 |
ctrl | 1+2+3 | C10 | 2 | 295258 |
ctrl | 1+2+3 | C10 | 3 | 292623 |
ctrl | 1+2+3 | C10 | 4 | 296571 |
ctrl | 1+2+3 | C10 | 5 | 301145 |
ctrl | 1+3 | C10 | 1 | 130747 |
ctrl | 1+3 | C10 | 2 | 135256 |
ctrl | 1+3 | C10 | 3 | 130535 |
ctrl | 1+3 | C10 | 4 | 131637 |
ctrl | 1+3 | C10 | 5 | 134188 |
ctrl | 1 | C11 | 1 | 94395 |
ctrl | 1 | C11 | 2 | 93207 |
ctrl | 1 | C11 | 3 | 95727 |
ctrl | 1 | C11 | 4 | 91878 |
ctrl | 1 | C11 | 5 | 92932 |
ctrl | 1+2 | C11 | 1 | 29672904 |
ctrl | 1+2 | C11 | 2 | 41261021 |
ctrl | 1+2 | C11 | 3 | 54014275 |
ctrl | 1+2 | C11 | 4 | 25077474 |
ctrl | 1+2 | C11 | 5 | 73583123 |
ctrl | 1+2+3 | C11 | 1 | 81872 |
ctrl | 1+2+3 | C11 | 2 | 82734 |
ctrl | 1+2+3 | C11 | 3 | 84131 |
ctrl | 1+2+3 | C11 | 4 | 84768 |
ctrl | 1+2+3 | C11 | 5 | 83909 |
ctrl | 1+3 | C11 | 1 | 43734 |
ctrl | 1+3 | C11 | 2 | 46370 |
ctrl | 1+3 | C11 | 3 | 43888 |
ctrl | 1+3 | C11 | 4 | 44855 |
ctrl | 1+3 | C11 | 5 | 43269 |
ctrl | 1 | C12 | 1 | 85789 |
ctrl | 1 | C12 | 2 | 84396 |
ctrl | 1 | C12 | 3 | 90814 |
ctrl | 1 | C12 | 4 | 87896 |
ctrl | 1 | C12 | 5 | 86842 |
ctrl | 1+2 | C12 | 1 | 34059 |
ctrl | 1+2 | C12 | 2 | 34206 |
ctrl | 1+2 | C12 | 3 | 34647 |
ctrl | 1+2 | C12 | 4 | 34310 |
ctrl | 1+2 | C12 | 5 | 35210 |
ctrl | 1+2+3 | C12 | 1 | 145572 |
ctrl | 1+2+3 | C12 | 2 | 143967 |
ctrl | 1+2+3 | C12 | 3 | 138577 |
ctrl | 1+2+3 | C12 | 4 | 144353 |
ctrl | 1+2+3 | C12 | 5 | 142404 |
ctrl | 1+3 | C12 | 1 | 83488 |
ctrl | 1+3 | C12 | 2 | 80861 |
ctrl | 1+3 | C12 | 3 | 83690 |
ctrl | 1+3 | C12 | 4 | 83577 |
ctrl | 1+3 | C12 | 5 | 82614 |
I tried a couple versions of this, but this code ran without error or warning, and gave the smallest AICC:
proc glimmix data=one; class Group Compound Animal Repeat; value=signal/1000; model value = group|compound|repeat/ddfm=bw; random intercept/subject=animal; random repeat/residual subject=animal type=cs group=group*compound; covtest homogeneity; run;
This split plot analysis with heterogeneous variances by group*compound is the best I came up with. Comparisons of interest regarding group and compound can be obtained with an LSMEANS or LSMESTIMATE statement.
SteveDenham
Thank you Steve, PROC GLIMMIX is very complicated and the model so! Is it possible to omit the "repeat" factor in the MODEL statement?
You can, but be sure to include the random statements as in the current model, especially the group=group*compound option to deal with the heterogeneity of variance issue. I don't know why you would drop it, though. It is a known design factor, the F tests, lsmeans and lsmean difference p values for tests of group, compound and group by compound are no different, and you get some insight into which whole plot factors have the largest effect on the repeat to repeat variability.
SteveDenham
Save $250 on SAS Innovate and get a free advance copy of the new SAS For Dummies book! Use the code "SASforDummies" to register. Don't miss out, May 6-9, in Orlando, Florida.
ANOVA, or Analysis Of Variance, is used to compare the averages or means of two or more populations to better understand how they differ. Watch this tutorial for more.
Find more tutorials on the SAS Users YouTube channel.