BookmarkSubscribeRSS Feed
chester2018
Obsidian | Level 7

Hi everyone! I'm new to LASSO regression, so I'm unsure how to interpret the output from this procedure. Here is the code I ran below:

 

proc hpgenselect data=data;
	class var1 (ref="0") var2 (ref="0") 
	var3 (ref="0") var4 (ref="0") 
  var5(ref="0") var6 (ref="0") var7 (ref="0") 
  var8 (ref="0") var9 (ref="0");
   model varx (ref="0")= var1 var2 var3 var4 var5 var6 var7 var8 var9
   / dist=mult link=glogit;
   selection method=lasso(choose=aicc) details=all;
   performance details;
run;

 

 

I'm confused on Selection Details and Parameter Estimates. I am under the impression I would use Proc Hpgenselect for the Lasso regression since the dependent variable is multinominal (rather than continuous). And I am under the impression that Lasso is useful to determine which independent variables would influence the dependent variable the most.

 

Any help will be greatly appreciated! *Var 3 for some reason doesn't come up in the output*

Step Description Effects
In Model
Lambda AIC AICC BIC
0 Initial Model 1 1 9524.699 9524.706 9543.186
1 var1 3 .8 9515.842 9515.883 9565.142
  var7 3 .8 9515.842 9515.883 9565.142
2 var6 4 .64 9507.382 9507.458 9575.170
3 var2 5 0.512 9492.006 9492.224 9609.094
4 var5 7 0.4096 9484.026 9484.526 9662.739
  var9 7 0.4096 9484.026 9484.526 9662.739
5 var8 8 0.3277 9451.726 9452.536 9679.739
6 var4 9 0.2621 9422.729 9423.822 9687.717
7   9 0.2097 9391.901 9392.994 9656.890
8   9 0.1678 9374.869 9376.118 9658.345
9   9 0.1342 9363.952 9365.427 9672.077
10   9 0.1074 9351.942 9353.600 9678.556
11   9 0.0859 9345.010 9346.927 9696.274
12   9 0.0687 9333.868 9335.785 9685.132
13   9 0.055 9329.730 9331.784 9693.319
14   9 0.044 9323.719 9325.773 9687.307
15   9 0.0352 9319.290 9321.344 9682.878
16   9 0.0281 9315.928 9317.982 9679.517
17   9 0.0225 9313.381 9315.435 9676.970
18   9 0.018 9311.495 9313.549 9675.084
19   9 0.0144 9312.130 9314.254 9681.881
20   9 0.0115 9311.125 9313.249* 9680.876

 

Parameter Estimates
Parameter Varx Group DF Estimate
Intercept 1 1 -0.923848
Intercept 3 1 -0.090371
Intercept 2 1 -0.475460
var1 1 1 1 0.208376
var1 1 3 1 0.085181
var1 1 2 1 -0.033519
var1 2 1 1 0.564515
var1 2 3 1 0.614004
var1 2 2 1 0.208413
var1 3 1 1 0.775994
var1 3 3 1 0.824564
var1 3 2 1 0.306114
var2 1 1 1 -0.258637
var2 1 3 1 -0.344585
var2 1 2 1 -0.420374
var2 2 1 1 -0.183059
var2 2 3 1 -0.006305
var2 2 2 1 -0.034611
var2 3 1 1 -0.656491
var2 3 3 1 -0.643286
var2 3 2 1 -0.339439
var41 1 1 0.216545
var41 3 1 0.176734
var41 2 1 -0.017829
var5 1 1 1 0.049015
var5 1 3 1 -0.122792
var51 2 1 0.374545
var5 2 1 1 -0.018575
var5 2 3 1 -0.220216
var5 2 2 1 0.117048
var6 1 1 1 0.576625
var6 1 3 1 0.338929
var6 1 2 1 0.416339
var6 2 1 1 0.998560
var6 2 3 1 0.743957
var6 2 2 1 0.502328
var6 3 1 1 1.339983
var6 3 3 1 0.982288
var6 3 2 1 0.665514
var7 1 1 1 -0.287458
var7 1 3 1 -0.587046
var7 1 2 1 -0.274003
var7 2 1 1 -0.346579
var7 2 3 1 -0.053197
var7 2 2 1 0.017640
var8 1 1 1 -0.059514
var8 1 3 1 -0.033493
var8 1 2 1 0.072684
var8 2 1 1 0.006447
var8 2 3 1 0.132097
var8 2 2 1 0.037160
var9 1 1 1 0.051825
var9 1 3 1 0.129466
var9 1 2 1 0.359189
var9 2 1 1 0.322085
var9 2 3 1 0.201435
var9 2 2 1 0.571104
var9 3 1 1 -0.118308
var9 3 3 1 -0.155053
var9 3 2 1 0.346671
1 REPLY 1
sbxkoenk
SAS Super FREQ

@chester2018 wrote:

Any help will be greatly appreciated! *Var 3 for some reason doesn't come up in the output*


lasso is used as variable selection method. Your Var_3 is not relevant for improving multi-class classification.

 

See also here (there is also coverage of overall "variable importance") :

https://communities.sas.com/t5/SAS-Communities-Library/Multinomial-Classification-in-SAS-Model-Studi...

Last update: ‎01-17-2024
Updated by: SAS Employee AndyRavenna

 

Koen

sas-innovate-white.png

Our biggest data and AI event of the year.

Don’t miss the livestream kicking off May 7. It’s free. It’s easy. And it’s the best seat in the house.

Join us virtually with our complimentary SAS Innovate Digital Pass. Watch live or on-demand in multiple languages, with translations available to help you get the most out of every session.

 

Register now!

What is ANOVA?

ANOVA, or Analysis Of Variance, is used to compare the averages or means of two or more populations to better understand how they differ. Watch this tutorial for more.

Find more tutorials on the SAS Users YouTube channel.

Discussion stats
  • 1 reply
  • 605 views
  • 1 like
  • 2 in conversation