BookmarkSubscribeRSS Feed
alphabeta
Calcite | Level 5

Good evening,

I have two questions when translating stata codes to sas codes.

First, for poisson regression with longitudinal panel data, I tried proc glimmix in sas but get different coefficient estimates from xtpoisson command from stata.

Can anyone give me some suggestions?

Stata code:

xtset patient visit
#delimit ;
xtpoisson y x1 x2 x3 x4 x5 x6 x7 x8 x9 x10, exposure(visit) normal;
#delimit cr

SAS code:

PROC GLIMMIX METHOD=QUAD(QPOINTS=50) DATA=data_a;
CLASS patient;
MODEL y  = x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 / DIST=POISSON OFFSET=logvisit LINK=LOG S;
RANDOM INTERCEPT / SUBJECT=patient TYPE=UN;
RUN;

Second, I also fit a cross-sectional simple poisson regression to get predicted counts.

However, stata and sas seems to produce the predcited value differently.

Based on the code below, can anyone give me some hints how to get the same predicted "lnlm" in sas?

Stata code:

#delimit ;
xi: poisson y x1 x2 x3 x4 x5 x6 x7 x8 x9 x10, exposure(visit);
#delimit cr
predict lnlm, xb nooffset

SAS code:
PROC GENMOD DATA=data_b;
CLASS patient;
MODEL y = x1 x2 x3 x4 x5 x6 x7 x8 x9 x10/ DIST=POISSON OFFSET=logvisit LINK=LOG TYPE3 WALD;
output out=out_b   p=pred;
RUN;

Thanks!!

10 REPLIES 10
JacobSimonsen
Barite | Level 11

It is likely that the difference is due to the covariance structure. You used a unstructured covariance matrix, but I would guess that STATA use the varicance-component structure as default, as SAS also do.

Can you write your model in mathematical terms, not all here understand STATA code.

alphabeta
Calcite | Level 5

Hi Jacob,

I tried different covariance structure options, but the coefficients are still different.

I was only given the stata codes, but I assume the original coder wants to fit a random effect poisson regression with an exposure variable, and the random effect follows a normal distribution based on the code.

Thanks!

alphabeta

ets_kps
SAS Employee

Hi alphabeta,

You might want to try this. SAS/ETS(R) 14.1 User's Guide

The COUNTREG procedure in ETS has panel data poisson regression which is likely similar to the Stata xtpoisson command. 

try

proc countreg data=a groupid=id;

model y = x1-x10 / errorcomp=fixed dist=poisson; run;

Let me know if this helps.  -Ken

alphabeta
Calcite | Level 5

Hi Ken,

Thanks for your method.

I tried this method with both fixed and random effect, but the coefficients are still not close either.

Thanks!

alphabeta

alphabeta
Calcite | Level 5

Hi all,

For the predict part, I figured out lnlm=log(pred/visit), pred=exp(lnlm)*visit

I didn't divide back the exposure variable, that is why stata and sas were different.

For the coefficients, somehow fitting simple poisson regression was not a problem, but fitting a random effect poisson regression using stata and sas gives me very different coefficient estimates.

Still not having a clue yet.

alphabeta

ets_kps
SAS Employee

I think the coefficients are different because of your use of the exposure() options.  If you run the following example you will find that the SAS and Stata coefficients are exactly the same. 

data ships;

input ship time yr_con yr_op service accident op co_65_69 co_70_74 co_75_79

       weight;

int=1;

cards;

1       1       1       1       127         0   0       0       0       0 3

1       2       1       2       63          0   1       0       0       0 4

1       3       2       1       1095    3       0       1       0       0 4

1       4       2       2       1095    4       1       1       0       0 3

1       5       3       1       1512    6       0       0       1       0 6

1       6       3       2       3353    18      1       0       1       0 7

1       7       4       1       .           .   0       0       0       1 8

1       8       4       2       2244    11      1       0       0       1 7

2       1       1       1       44882   39      0       0       0       0 4

2       2       1       2       17176   29      1       0       0       0 5

2       3       2       1       28609   58      0       1       0       0 3

2       4       2       2       20370   53      1       1       0       0 2

2       5       3       1       7064    12      0       0       1       0 3

2       6       3       2       13099   44      1       0       1       0 4

2       7       4       1       .           .   0       0       0       1 6

2       8       4       2       7117    18      1       0       0       1 5

3       1       1       1       1179    1       0       0       0       0 4

3       2       1       2       552         1   1       0       0       0 3

3       3       2       1       781         0   0       1       0       0 2

3       4       2       2       676         1   1       1       0       0 1

3       5       3       1       783         6   0       0       1       0 3

3       6       3       2       1948    2       1       0       1       0 4

3       7       4       1       .           .   0       0       0       1 5

3       8       4       2       274        1    1       0       0       1 3

4       1       1       1       251        0    0       0       0       0 2

4       2       1       2       105        0    1       0       0       0 1

4       3       2       1       288        0    0       1       0       0 5

4       4       2       2       192        0    1       1       0       0 5

4       5       3       1       349        2    0       0       1       0 4

4       6       3       2       1208   11       1       0       1       0 3

4       7       4       1       .          .    0       0       0       1 2

4       8       4       2       2051    4       1       0       0       1 4

5       1       1       1       45         0    0       0       0       0 5

5       2       1       2       .          .    1       0       0       0 6

5       3       2       1       789        7    0       1       0       0 7

5       4       2       2       437        7    1       1       0       0 8

5       5       3       1       1157   5        0       0       1       0 9

5       6       3       2       2161   12       1       0       1       0 6

5       7       4       1       .          .    0       0       0       1 4

5       8       4       2       542        1    1       0       0       1 3

;

data two;

set ships;

lnservice = log(service);

run;

proc countreg data=two dist=poisson groupid=ship;

model accident=op co_65_69 co_70_74 co_75_79/ errorcomp=fixed offset=lnservice;

run;

proc countreg data=two dist=negbin groupid=ship;

model accident=op co_65_69 co_70_74 co_75_79/ errorcomp=fixed offset=lnservice;

run;

*poisson with RE and no exposure(service) option;

proc countreg data=two dist=poisson groupid=ship;

model accident=op co_65_69 co_70_74 co_75_79/ errorcomp=random /*offset=lnservice*/;

run;

*Poisson with RE and exposure(service);

proc countreg data=two dist=poisson groupid=ship ;

model accident=op co_65_69 co_70_74 co_75_79/ errorcomp=random offset=lnservice;

run;

proc export data=two outfile="C:\Public\two.dta"; run;

/*open stata and run this

use "C:\Public\two.dta", clear

xtset ship

*coefficients match the "Poisson with RE and no exposure(service) option" exactly

xtpoisson accident op co_65_69 co_70_74 co_75_79,  re

estimates store re

*coefficients matches the "Poisson with RE and exposure(service)" exactly

xtpoisson accident op co_65_69 co_70_74 co_75_79, exposure(service) re

estimates store re_wos

outreg2 [re re_wos] using compare, addstat(log-like, `e(ll)')

alphabeta
Calcite | Level 5

Hi Ken,

Somehow running sas 9.3 gives me error message as follows:

271  proc countreg data=two dist=poisson groupid=ship ;

                                         -------

                                         22

                                         76

ERROR 22-322: Syntax error, expecting one of the following: ;, ABSFCONV, ABSGCONV, CORRB, COVB,

              COVEST, COVOUT, DATA, DIST, FCONV, GCONV, ITPRINT, MAXITER, METHOD, NOPRINT,

              OUTEST, PRINTALL, SEED, TYPE.

ERROR 76-322: Syntax error, statement will be ignored.

If change the codes as

proc countreg data=two dist=poisson;

by ship ;

then sas gives me another error message

284  proc countreg data=two dist=poisson;

285  by ship ;

286  model accident=op co_65_69 co_70_74 co_75_79/ errorcomp=random offset=lnservice;

                                                   ---------

                                                   22

                                                   76

ERROR 22-322: Syntax error, expecting one of the following: ;, CORRB, COVB, COVEST, COVOUT,

              DIST, ITPRINT, METHOD, NOINT, NOPRINT, OFFSET, OUTEST, PRINTALL, TYPE.

ERROR 76-322: Syntax error, statement will be ignored.

Can you take a look for me? Thanks!!

ets_kps
SAS Employee

alphabeta,

Our apologies.  I was using syntax that we introduced in a more recent version.   Please try the following modifications.

remove the groupid=

include a id statement

change countreg to TCOUNTREG

For example

*poisson with RE and no exposure(service) option;

proc tcountreg data=two dist=poisson ;

id ship;

model accident=op co_65_69 co_70_74 co_75_79/ errorcomp=random /*offset=lnservice*/;

run;

*Poisson with RE and exposure(service);

proc tcountreg data=two dist=poisson;

id=ship;

model accident=op co_65_69 co_70_74 co_75_79/ errorcomp=random offset=lnservice;

run;

I have run this vs old syntax and get the same estimates from older to newer versions. ==> it will still match Stata's coefficients.

Good luck-Ken

alphabeta
Calcite | Level 5

Hi Ken,

I ran both sas 9.3 and sas 9.4 today, but the coefficients are still different from the stata command given.

The codes and results are as follows

Stata codes:

xtset patient visit
#delimit ;
xtpoisson y x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16, exposure(visit) normal;
#delimit cr

Stata results

Fitting comparison Poisson model:

Iteration 0:   log likelihood =  -13626.58 

Iteration 1:   log likelihood = -13626.554 

Iteration 2:   log likelihood = -13626.554 

Fitting full model:

tau =  0.0     log likelihood = -13626.554

tau =  0.1     log likelihood = -13563.763

tau =  0.2     log likelihood =  -13549.87

tau =  0.3     log likelihood =  -13562.89

Iteration 0:   log likelihood = -13549.935 

Iteration 1:   log likelihood = -13547.007 

Iteration 2:   log likelihood = -13546.996 

Iteration 3:   log likelihood = -13546.996 

Random-effects Poisson regression               Number of obs     

> =                                                               

>      100000

Group variable: patient                         Number of groups  

> =                                                               

>        2391

Random effects u_i ~ Gaussian                   Obs per group: min

> =                                                               

>           1

                                                               avg

> =                                                               

>        41.8

                                                               max

> =                                                               

>         231

Integration method: mvaghermite                 Integration points

> =                                                               

>          12

                                                Wald chi2(16)     

> =                                                               

>      308.08

Log likelihood  = -13546.996                    Prob > chi2       

> =                                                               

>      0.0000

-------------------------------------------------------------------

> -----------

      y |      Coef.   Std. Err.      z    P>|z|     [95% Conf

> . Interval]

-------------+-----------------------------------------------------

> -----------

        x1 |  -.0023401   .0019663    -1.19   0.234    -.0061939

>    .0015137

        x2 |   .0791925   .0509703     1.55   0.120    -.0207075

>    .1790925

        x3 |  -.0556415   .0857818    -0.65   0.517    -.2237707

>    .1124877

        x4 |   .2604183   .1530857     1.70   0.089    -.0396241

>    .5604608

        x5|   .0260236   .1988315     0.13   0.896     -.363679

>    .4157261

        x6 |   .0096076   .0558143     0.17   0.863    -.0997864

>    .1190016

        x7 |   .8417932   .0595242    14.14   0.000     .7251279

>    .9584586

        x8 |  -.0860519   .0591174    -1.46   0.146    -.2019199

>     .029816

       x9 |  -.3834076   .0742257    -5.17   0.000    -.5288874

>   -.2379278

        x10|   .0169214   .0610793     0.28   0.782    -.1027917

>    .1366346

       x11 |  -.2420708   .0549503    -4.41   0.000    -.3497714

>   -.1343701

       x12 |  -.3106347   .0593382    -5.23   0.000    -.4269354

>    -.194334

       x13 |  -.1306361   .0632131    -2.07   0.039    -.2545315

>   -.0067407

       x14|  -.1735819   .0566482    -3.06   0.002    -.2846104

>   -.0625535

      x15 |  -.2393673   .0561851    -4.26   0.000    -.3494881

>   -.1292465

      x16 |  -.0680811   .0809386    -0.84   0.400    -.2267179

>    .0905557

       _cons |  -7.036347   .1595935   -44.09   0.000    -7.349144

>   -6.723549

   ln(visit) |          1  (exposure)

-------------+-----------------------------------------------------

> -----------

    /lnsig2u |  -1.364564   .1253317   -10.89   0.000    -1.610209

>   -1.118918

-------------+-----------------------------------------------------

> -----------

     sigma_u |   .5054623   .0316752                      .4470412

>    .5715182

-------------------------------------------------------------------

> -----------

Likelihood-ratio test of sigma_u=0: chibar2(01) =   159.11 Pr>=chib

> ar2 = 0.000

SAS 9.4 codes

proc countreg data=out_sample1 dist=poisson groupid=patient ;

model y = x1 x2 x3 x4 x5x 6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 / errorcomp=random offset=logvisit;

run;

SAS 9.4 results

The COUNTREG Procedure

Model Fit Summary

Dependent Variable    y

Number of Observations    100000

Data Set    WORK.OUT_SAMPLE1

Model    Poisson

Error Component    Random

Number of Cross Sections    2391

Offset Variable    logvisit

Log Likelihood    -13554

Maximum Absolute Gradient    9.56066E-7

Number of Iterations    15

Optimization Method    Newton-Raphson

AIC    27143

SBC    27315

Algorithm converged.

Parameter Estimates

Parameter    DF    Estimate    Standard Error    t Value    Pr > |t|

Intercept    1    -6.899390    0.156789    -44.00    <.0001

x1    1    -0.002426    0.001927    -1.26    0.2079

x2    1    0.091417    0.050119    1.82    0.0682

x3    1    -0.067597    0.084548    -0.80    0.4240

x4    1    0.267802    0.154460    1.73    0.0830

x5    1    0.039801    0.197891    0.20    0.8406

x6    1    0.003591    0.054764    0.07    0.9477

x7    1    0.848595    0.058601    14.48    <.0001

x8    1    -0.085057    0.058143    -1.46    0.1435

x9    1    -0.384157    0.072340    -5.31    <.0001

x10    1    0.022466    0.060081    0.37    0.7085

x11    1    -0.253048    0.054064    -4.68    <.0001

x12    1    -0.320980    0.058543    -5.48    <.0001

x13    1    -0.146113    0.062766    -2.33    0.0199

x14    1    -0.172344    0.055604    -3.10    0.0019

x15    -0.241250    0.055214    -4.37    <.0001

x16    1    -0.074001    0.079395    -0.93    0.3513

_Alpha    1    0.229979    0.028888    7.96    <.0001

SAS 9.3 codes

proc tcountreg data=out_sample1 dist=poisson;

id patient;

model y= x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 / errorcomp=random offset=logvisit;

run;

SAS 9.3 results

The TCOUNTREG Procedure

Model Fit Summary

Dependent Variable    y

Number of Observations    100000

Data Set    WORK.OUT_SAMPLE1

Model    Poisson

Error Component    Random

Offset Variable    logvisit

Log Likelihood    -13557

Maximum Absolute Gradient    1.12475E-6

Number of Iterations    14

Optimization Method    Newton-Raphson

AIC    27151

SBC    27322

Algorithm converged.

Parameter Estimates

Parameter    DF    Estimate    Standard Error    t Value    Pr > |t|

Intercept    1    -6.899832    0.153968    -44.81    <.0001

x1    1    -0.002457    0.001891    -1.30    0.1938

x2    1    0.086361    0.049271    1.75    0.0796

x3    1    -0.070813    0.083061    -0.85    0.3939

x4    1    0.263515    0.152089    1.73    0.0832

x5    1    0.030784    0.195286    0.16    0.8747

x6    1    -0.000162    0.053809    -0.00    0.9976

x7    1    0.837899    0.057722    14.52    <.0001

x8    1    -0.084471    0.057015    -1.48    0.1385

x9    1    -0.373889    0.071050    -5.26    <.0001

x10    1    0.019545    0.058936    0.33    0.7402

x11    1    -0.246067    0.053034    -4.64    <.0001

x12    1    -0.315442    0.057560    -5.48    <.0001

x13    1    -0.141599    0.061752    -2.29    0.0218

x14    1    -0.175507    0.054645    -3.21    0.0013

x15    1    -0.241094    0.054212    -4.45    <.0001

x16    1    -0.080489    0.077757    -1.04    0.3006

_Alpha    1    0.222232    0.028434    7.82    <.0001

Is this difference due to "unbalanced"panel data?

I noticed stata results indicate panel variable:  patient (unbalanced).

Thanks!!

alphabeta

ets_kps
SAS Employee

It is possible that it is due to an imbalance.  You could check this by deleting a couple time obs from a cross section and then checking against my code i provided. 

I am afraid that if you need any more assistance, you will have to contact Tech Support and open a formal track.

1-800-727-0025


Good luck-Ken 

SAS Innovate 2025: Save the Date

 SAS Innovate 2025 is scheduled for May 6-9 in Orlando, FL. Sign up to be first to learn about the agenda and registration!

Save the date!

What is ANOVA?

ANOVA, or Analysis Of Variance, is used to compare the averages or means of two or more populations to better understand how they differ. Watch this tutorial for more.

Find more tutorials on the SAS Users YouTube channel.

Discussion stats
  • 10 replies
  • 3092 views
  • 1 like
  • 3 in conversation