BookmarkSubscribeRSS Feed
🔒 This topic is solved and locked. Need further help from the community? Please sign in and ask a new question.
onhoaian
Calcite | Level 5

I would like to estimate b coefficients for each stock by each year based on a regression model as follows: r = a + b1 x rm(-2) + b2 x rm(-1) +b3 x rm + b4 x rm(1) + b5 x rm(2), where r and rm are stock and market return respectively. The data is represented below, please kindly help. Thank you for the support.

STOCKDATESTOCKRETURNMARKETRETURN
AAA6/15/20120.190.29
AAA6/16/20120.190.29
AAA6/17/20120.20.3
AAA6/18/20120.20.3
AAA6/19/20120.210.31
AAA6/20/20120.210.31
AAA6/21/20120.20.3
AAA6/22/20120.190.29
AAA6/23/20120.190.29
AAA6/24/20120.190.29
AAA6/25/20120.190.29
AAA6/26/20120.20.3
AAA6/27/20120.20.3
AAA6/28/20120.20.3
AAA6/29/20120.20.3
ABC6/15/20120.190.29
ABC6/16/20120.210.31
ABC6/17/20120.210.31
ABC6/18/20120.190.29
ABC6/19/20120.20.3
ABC6/20/20120.210.31
ABC6/21/20120.210.31
ABC6/22/20120.210.31
ABC6/23/20120.240.34
ABC6/24/20120.250.35
ABC6/25/20120.250.35
ABC6/26/20120.250.35
ABC6/27/20120.240.34
ABC6/28/20120.240.34
ABC6/29/20120.240.34
1 ACCEPTED SOLUTION

Accepted Solutions
PGStats
Opal | Level 21

Two ways to do this, with or without SAS/ETS :

data have;
format date yymmdd10.;
input STOCK $ DATE :mmddyy10. STOCKRETURN MARKETRETURN;
datalines;
AAA 6/15/2012  0.19 0.29
AAA 6/16/2012 0.19 0.29
AAA 6/17/2012 0.2 0.3
AAA 6/18/2012 0.2 0.3
AAA 6/19/2012 0.21 0.31
AAA 6/20/2012 0.21 0.31
AAA 6/21/2012 0.2 0.3
AAA 6/22/2012 0.19 0.29
AAA 6/23/2012 0.19 0.29
AAA 6/24/2012 0.19 0.29
AAA 6/25/2012 0.19 0.29
AAA 6/26/2012 0.2 0.3
AAA 6/27/2012 0.2 0.3
AAA 6/28/2012 0.2 0.3
AAA 6/29/2012 0.2 0.3
ABC 6/15/2012 0.19 0.29
ABC 6/16/2012 0.21 0.31
ABC 6/17/2012 0.21 0.31
ABC 6/18/2012 0.19 0.29
ABC 6/19/2012 0.2 0.3
ABC 6/20/2012 0.21 0.31
ABC 6/21/2012 0.21 0.31
ABC 6/22/2012 0.21 0.31
ABC 6/23/2012 0.24 0.34
ABC 6/24/2012 0.25 0.35
ABC 6/25/2012 0.25 0.35
ABC 6/26/2012 0.25 0.35
ABC 6/27/2012 0.24 0.34
ABC 6/28/2012 0.24 0.34
ABC 6/29/2012 0.24 0.34
;

proc sql;
create table have0 as
select a.stock, a.date, a.stockreturn, intck("DAY", a.date, b.date) as lag,
     b.marketReturn as mr
from have as a inner join have as b
     on a.stock=b.stock and intck("DAY", a.date, b.date) between -2 and 2
order by a.stock, a.date, lag;

proc transpose data=have0
     out=want(drop=_name_) prefix=mr;
by stock date stockreturn;
id lag;
var mr;
run;

/* Or, if you have SAS/ETS, use proc expand */
proc expand data=have out=want;
by stock;
id date;
convert marketreturn=mr_2 / transform=(lag 2);
convert marketreturn=mr_1 / transform=(lag 1);
convert marketreturn=mr0;
convert marketreturn=mr1 / transform=(lead 1);
convert marketreturn=mr2 / transform=(lead 2);
run;

/* Do the regressions, requesting the Durbin-Watson test for autocorrelation */
proc reg data=want;
by stock;
model stockreturn = mr_2 mr_1 mr0 mr1 mr2 / dwProb;
run;

PG

PG

View solution in original post

1 REPLY 1
PGStats
Opal | Level 21

Two ways to do this, with or without SAS/ETS :

data have;
format date yymmdd10.;
input STOCK $ DATE :mmddyy10. STOCKRETURN MARKETRETURN;
datalines;
AAA 6/15/2012  0.19 0.29
AAA 6/16/2012 0.19 0.29
AAA 6/17/2012 0.2 0.3
AAA 6/18/2012 0.2 0.3
AAA 6/19/2012 0.21 0.31
AAA 6/20/2012 0.21 0.31
AAA 6/21/2012 0.2 0.3
AAA 6/22/2012 0.19 0.29
AAA 6/23/2012 0.19 0.29
AAA 6/24/2012 0.19 0.29
AAA 6/25/2012 0.19 0.29
AAA 6/26/2012 0.2 0.3
AAA 6/27/2012 0.2 0.3
AAA 6/28/2012 0.2 0.3
AAA 6/29/2012 0.2 0.3
ABC 6/15/2012 0.19 0.29
ABC 6/16/2012 0.21 0.31
ABC 6/17/2012 0.21 0.31
ABC 6/18/2012 0.19 0.29
ABC 6/19/2012 0.2 0.3
ABC 6/20/2012 0.21 0.31
ABC 6/21/2012 0.21 0.31
ABC 6/22/2012 0.21 0.31
ABC 6/23/2012 0.24 0.34
ABC 6/24/2012 0.25 0.35
ABC 6/25/2012 0.25 0.35
ABC 6/26/2012 0.25 0.35
ABC 6/27/2012 0.24 0.34
ABC 6/28/2012 0.24 0.34
ABC 6/29/2012 0.24 0.34
;

proc sql;
create table have0 as
select a.stock, a.date, a.stockreturn, intck("DAY", a.date, b.date) as lag,
     b.marketReturn as mr
from have as a inner join have as b
     on a.stock=b.stock and intck("DAY", a.date, b.date) between -2 and 2
order by a.stock, a.date, lag;

proc transpose data=have0
     out=want(drop=_name_) prefix=mr;
by stock date stockreturn;
id lag;
var mr;
run;

/* Or, if you have SAS/ETS, use proc expand */
proc expand data=have out=want;
by stock;
id date;
convert marketreturn=mr_2 / transform=(lag 2);
convert marketreturn=mr_1 / transform=(lag 1);
convert marketreturn=mr0;
convert marketreturn=mr1 / transform=(lead 1);
convert marketreturn=mr2 / transform=(lead 2);
run;

/* Do the regressions, requesting the Durbin-Watson test for autocorrelation */
proc reg data=want;
by stock;
model stockreturn = mr_2 mr_1 mr0 mr1 mr2 / dwProb;
run;

PG

PG

hackathon24-white-horiz.png

The 2025 SAS Hackathon has begun!

It's finally time to hack! Remember to visit the SAS Hacker's Hub regularly for news and updates.

Latest Updates

What is ANOVA?

ANOVA, or Analysis Of Variance, is used to compare the averages or means of two or more populations to better understand how they differ. Watch this tutorial for more.

Find more tutorials on the SAS Users YouTube channel.

Discussion stats
  • 1 reply
  • 1831 views
  • 0 likes
  • 2 in conversation