Dear Sir or Madam,
Can I please ask which result is more appropriate? I tried both Poisson and Negative Binomial with noscale, pscale and dscale but I am not sure which one is more appropriate. It seems NegBin with scale=pearson is better than Poisson because of lower Log likelihood, AIC, AICC and BIC. Am I on the right track?
Any insight is much appreciated. Thank you very much.
ods select modelfit ParameterEstimates;
proc genmod data=tmp order=formatted;
title1 "Poisson-noscale";
where occ>0;
format raps raps.;
class raps;
model Inv=raps / type3 dist=poisson link=log noscale;
run;
Poisson-noscale
Criteria For Assessing Goodness Of Fit
Criterion DF Value Value/DF
Deviance 1978 727.6564 0.3679
Scaled Deviance 1978 727.6564 0.3679
Pearson Chi-Square 1978 4544.5249 2.2975
Scaled Pearson X2 1978 4544.5249 2.2975
Log Likelihood -383.7010
Full Log Likelihood -444.8931
AIC (smaller is better) 899.7862
AICC (smaller is better) 899.8166
BIC (smaller is better) 927.7480
Analysis Of Maximum Likelihood Parameter Estimates
Standard Wald 95% Confidence Wald
Parameter DF Estimate Error Limits Chi-Square Pr > ChiSq
Intercept 1 -3.6990 0.1644 -4.0212 -3.3767 506.25 <.0001
raps Four 1 2.9105 0.4765 1.9766 3.8444 37.31 <.0001
raps One 1 1.5888 0.2341 1.1299 2.0476 46.06 <.0001
raps Three 1 3.0466 0.2589 2.5392 3.5541 138.48 <.0001
raps Two 1 1.5242 0.3061 0.9243 2.1241 24.80 <.0001
raps Zero 0 0.0000 0.0000 0.0000 0.0000 . .
Scale 0 1.0000 0.0000 1.0000 1.0000
NOTE: The scale parameter was held fixed.
===============================================================================================================
ods select modelfit ParameterEstimates;
proc genmod data=tmp order=formatted;
title1 "Poisson:scale=Pearson";
where occ>0;
format raps raps.;
class raps;
model Inv=raps / type3 dist=poisson link=log scale=p;
run;
Poisson:scale=Pearson
Criteria For Assessing Goodness Of Fit
Criterion DF Value Value/DF
Deviance 1978 727.6564 0.3679
Scaled Deviance 1978 316.7118 0.1601
Pearson Chi-Square 1978 4544.5249 2.2975
Scaled Pearson X2 1978 1978.0000 1.0000
Log Likelihood -167.0055
Full Log Likelihood -444.8931
AIC (smaller is better) 899.7862
AICC (smaller is better) 899.8166
BIC (smaller is better) 927.7480
Analysis Of Maximum Likelihood Parameter Estimates
Standard Wald 95% Confidence Wald
Parameter DF Estimate Error Limits Chi-Square Pr > ChiSq
Intercept 1 -3.6990 0.2492 -4.1874 -3.2106 220.34 <.0001
raps Four 1 2.9105 0.7222 1.4950 4.3260 16.24 <.0001
raps One 1 1.5888 0.3548 0.8933 2.2842 20.05 <.0001
raps Three 1 3.0466 0.3924 2.2775 3.8158 60.27 <.0001
raps Two 1 1.5242 0.4640 0.6149 2.4336 10.79 0.0010
raps Zero 0 0.0000 0.0000 0.0000 0.0000 . .
Scale 0 1.5158 0.0000 1.5158 1.5158
NOTE: The scale parameter was estimated by the square root of Pearson's Chi-Square/DOF.
===============================================================================================================
ods select modelfit ParameterEstimates;
proc genmod data=tmp order=formatted;
title1 "Poisson:scale=Deviance";
where occ>0;
format raps raps.;
class raps;
model Inv=raps / type3 dist=poisson link=log scale=d;
run;
Poisson:scale=Deviance
Criteria For Assessing Goodness Of Fit
Criterion DF Value Value/DF
Deviance 1978 727.6564 0.3679
Scaled Deviance 1978 1978.0000 1.0000
Pearson Chi-Square 1978 4544.5249 2.2975
Scaled Pearson X2 1978 12353.4536 6.2454
Log Likelihood -1043.0205
Full Log Likelihood -444.8931
AIC (smaller is better) 899.7862
AICC (smaller is better) 899.8166
BIC (smaller is better) 927.7480
Analysis Of Maximum Likelihood Parameter Estimates
Standard Wald 95% Confidence Wald
Parameter DF Estimate Error Limits Chi-Square Pr > ChiSq
Intercept 1 -3.6990 0.0997 -3.8944 -3.5035 1376.14 <.0001
raps Four 1 2.9105 0.2890 2.3441 3.4769 101.43 <.0001
raps One 1 1.5888 0.1420 1.3105 1.8670 125.20 <.0001
raps Three 1 3.0466 0.1570 2.7389 3.3544 376.44 <.0001
raps Two 1 1.5242 0.1857 1.1603 1.8881 67.40 <.0001
raps Zero 0 0.0000 0.0000 0.0000 0.0000 . .
Scale 0 0.6065 0.0000 0.6065 0.6065
NOTE: The scale parameter was estimated by the square root of DEVIANCE/DOF.
===============================================================================================================
ods select modelfit ParameterEstimates;
proc genmod data=tmp order=formatted;
title1 "NegBin:noscale";
where occ>0;
format raps raps.;
class raps;
model Inv=raps / type3 dist=negbin noscale;
run;
NegBin:noscale
Criteria For Assessing Goodness Of Fit
Criterion DF Value Value/DF
Deviance 1978 727.6564 0.3679
Scaled Deviance 1978 727.6564 0.3679
Pearson Chi-Square 1978 4544.5249 2.2975
Scaled Pearson X2 1978 4544.5249 2.2975
Log Likelihood -383.7010
Full Log Likelihood -444.8931
AIC (smaller is better) 899.7862
AICC (smaller is better) 899.8166
BIC (smaller is better) 927.7480
Analysis Of Maximum Likelihood Parameter Estimates
Standard Wald 95% Confidence Wald
Parameter DF Estimate Error Limits Chi-Square Pr > ChiSq
Intercept 1 -3.6990 0.1644 -4.0212 -3.3767 506.25 <.0001
raps Four 1 2.9105 0.4765 1.9766 3.8444 37.31 <.0001
raps One 1 1.5888 0.2341 1.1299 2.0476 46.06 <.0001
raps Three 1 3.0466 0.2589 2.5392 3.5541 138.48 <.0001
raps Two 1 1.5242 0.3061 0.9243 2.1241 24.80 <.0001
raps Zero 0 0.0000 0.0000 0.0000 0.0000 . .
Dispersion 0 0.0000 0.0000 . .
NOTE: The negative binomial dispersion parameter was held fixed.
===============================================================================================================
ods select modelfit ParameterEstimates;
proc genmod data=tmp order=formatted;
title1 "NegBin:scale=Pearson";
where occ>0;
format raps raps.;
class raps;
model Inv=raps / type3 dist=negbin scale=p;
run;
NegBin:scale=Pearson
Criteria For Assessing Goodness Of Fit
Criterion DF Value Value/DF
Deviance 1978 281.1836 0.1422
Scaled Deviance 1978 216.5476 0.1095
Pearson Chi-Square 1978 2568.4019 1.2985
Scaled Pearson X2 1978 1978.0000 1.0000
Log Likelihood -227.8614
Full Log Likelihood -357.0665
AIC (smaller is better) 726.1330
AICC (smaller is better) 726.1755
BIC (smaller is better) 759.6872
Analysis Of Maximum Likelihood Parameter Estimates
Standard Wald 95% Confidence Wald
Parameter DF Estimate Error Limits Chi-Square Pr > ChiSq
Intercept 1 -3.6990 0.2119 -4.1142 -3.2837 304.85 <.0001
raps Four 1 2.9105 1.2786 0.4045 5.4165 5.18 0.0228
raps One 1 1.5888 0.3609 0.8815 2.2960 19.38 <.0001
raps Three 1 3.0466 0.6338 1.8045 4.2888 23.11 <.0001
raps Two 1 1.5242 0.4922 0.5594 2.4890 9.59 0.0020
raps Zero 0 0.0000 0.0000 0.0000 0.0000 . .
Dispersion 1 11.2685 3.0312 6.6511 19.0914
NOTE: The covariance matrix was multiplied by a factor of Pearson's Chi-Square/DOF.
===============================================================================================================
ods select modelfit ParameterEstimates;
proc genmod data=tmp order=formatted;
title1 "NegBin:scale=Deviance";
where occ>0;
format raps raps.;
class raps;
model Inv=raps / type3 dist=negbin scale=d;
run;
NegBin:scale=Deviance
Criteria For Assessing Goodness Of Fit
Criterion DF Value Value/DF
Deviance 1978 281.1836 0.1422
Scaled Deviance 1978 1978.0000 1.0000
Pearson Chi-Square 1978 2568.4019 1.2985
Scaled Pearson X2 1978 18067.5485 9.1343
Log Likelihood -2081.3431
Full Log Likelihood -357.0665
AIC (smaller is better) 726.1330
AICC (smaller is better) 726.1755
BIC (smaller is better) 759.6872
Analysis Of Maximum Likelihood Parameter Estimates
Standard Wald 95% Confidence Wald
Parameter DF Estimate Error Limits Chi-Square Pr > ChiSq
Intercept 1 -3.6990 0.0701 -3.8364 -3.5616 2784.62 <.0001
raps Four 1 2.9105 0.4230 2.0813 3.7397 47.33 <.0001
raps One 1 1.5888 0.1194 1.3547 1.8228 177.06 <.0001
raps Three 1 3.0466 0.2097 2.6356 3.4576 211.09 <.0001
raps Two 1 1.5242 0.1629 1.2050 1.8434 87.58 <.0001
raps Zero 0 0.0000 0.0000 0.0000 0.0000 . .
Dispersion 1 11.2685 1.0030 9.4647 13.4161
NOTE: The covariance matrix was multiplied by a factor of DEVIANCE/DOF.
Looks like both mode are not good ,both have sparse data problem. Maybe you should check other model :
Usage Note 56549: Poisson regression using a generalized Poisson distribution for overdispersed data
Hi @Ksharp,
Thank you for your quick reply.
May I know what do you mean by sparse data? The number of observation in each level of RAPS?
Thank you.
Sorry. It is known as overdispersion. It is what you are talking about. Both model 's Deviance/PearsonChiSquare are not equal to 1 .
Try to use a generalization of the Poisson distribution that allows for more variability.
Hi @Ksharp.
Thank you for your reply.
I tried proc fmm from the link you gave. The result from proc fmm indicates it is better due to lower Fit Statistics.
Will this better Fit Statistics suffice to report the result?
Thank you very much.
proc fmm data=tmp;
where occ>0;
format raps raps.;
class raps;
model Inv=raps / dist=genpoisson;
output out=fout pred;
run;
Model Information
Data Set WORK.TMP
Response Variable INV
Type of Model Homogeneous Regression Mixture
Distribution Generalized Poisson
Components 1
Link Function Log
Estimation Method Maximum Likelihood
Class Level Information
Class Levels Values
raps 5 Four One Three Two Zero
Number of Observations Read 1987
Number of Observations Used 1983
Optimization Information
Optimization Technique Dual Quasi-Newton
Parameters in Optimization 6
Mean Function Parameters 5
Scale Parameters 1
Lower Boundaries 1
Upper Boundaries 0
Number of Threads 4
Iteration History
Objective Max
Iteration Evaluations Function Change Gradient
0 5 409.36479106 . 98.97307
1 2 376.19104009 33.17375098 39.94237
2 3 371.9062368 4.28480328 12.1904
3 3 370.07577813 1.83045867 11.37286
4 2 368.76519848 1.31057965 49.32246
5 2 366.71073524 2.05446324 31.20835
6 7 359.51367257 7.19706267 34.19023
7 3 356.74474967 2.76892290 19.68732
8 3 355.58963948 1.15511019 7.101384
9 3 354.99227853 0.59736095 3.494614
10 3 354.95037557 0.04190296 1.079578
11 3 354.94476031 0.00561526 0.188769
12 3 354.9446361 0.00012421 0.04672
13 3 354.94462919 0.00000691 0.006375
14 3 354.94462905 0.00000014 0.001309
Convergence criterion (GCONV=1E-8) satisfied.
Fit Statistics
-2 Log Likelihood 709.9
AIC (smaller is better) 721.9
AICC (smaller is better) 721.9
BIC (smaller is better) 755.4
Pearson Statistic 2280.3
Parameter Estimates for 'Generalized Poisson' Model
Standard
Effect raps Estimate Error z Value Pr > |z|
Intercept -3.4037 0.1972 -17.26 <.0001
raps Four 2.6827 0.5947 4.51 <.0001
raps One 0.8117 0.3204 2.53 0.0113
raps Three 2.5387 0.3460 7.34 <.0001
raps Two 1.5412 0.3286 4.69 <.0001
raps Zero 0 . . .
Scale Parameter 0.4364 0.08798
Yes. I think this mode is better than negitive binomial model, since all these
AIC (smaller is better) AICC (smaller is better) BIC (smaller is better)
are smaller .
I think for Time series also smaller AIC and BIC is better. Could you please tell me why we need to choose the model with smaller AIC and BIC?
April 27 – 30 | Gaylord Texan | Grapevine, Texas
Walk in ready to learn. Walk out ready to deliver. This is the data and AI conference you can't afford to miss.
Register now and lock in 2025 pricing—just $495!
ANOVA, or Analysis Of Variance, is used to compare the averages or means of two or more populations to better understand how they differ. Watch this tutorial for more.
Find more tutorials on the SAS Users YouTube channel.