- Mark as New
- Bookmark
- Subscribe
- Mute
- RSS Feed
- Permalink
- Report Inappropriate Content
Dear Sir or Madam,
Can I please ask which result is more appropriate? I tried both Poisson and Negative Binomial with noscale, pscale and dscale but I am not sure which one is more appropriate. It seems NegBin with scale=pearson is better than Poisson because of lower Log likelihood, AIC, AICC and BIC. Am I on the right track?
Any insight is much appreciated. Thank you very much.
ods select modelfit ParameterEstimates; proc genmod data=tmp order=formatted; title1 "Poisson-noscale"; where occ>0; format raps raps.; class raps; model Inv=raps / type3 dist=poisson link=log noscale; run; Poisson-noscale Criteria For Assessing Goodness Of Fit Criterion DF Value Value/DF Deviance 1978 727.6564 0.3679 Scaled Deviance 1978 727.6564 0.3679 Pearson Chi-Square 1978 4544.5249 2.2975 Scaled Pearson X2 1978 4544.5249 2.2975 Log Likelihood -383.7010 Full Log Likelihood -444.8931 AIC (smaller is better) 899.7862 AICC (smaller is better) 899.8166 BIC (smaller is better) 927.7480 Analysis Of Maximum Likelihood Parameter Estimates Standard Wald 95% Confidence Wald Parameter DF Estimate Error Limits Chi-Square Pr > ChiSq Intercept 1 -3.6990 0.1644 -4.0212 -3.3767 506.25 <.0001 raps Four 1 2.9105 0.4765 1.9766 3.8444 37.31 <.0001 raps One 1 1.5888 0.2341 1.1299 2.0476 46.06 <.0001 raps Three 1 3.0466 0.2589 2.5392 3.5541 138.48 <.0001 raps Two 1 1.5242 0.3061 0.9243 2.1241 24.80 <.0001 raps Zero 0 0.0000 0.0000 0.0000 0.0000 . . Scale 0 1.0000 0.0000 1.0000 1.0000 NOTE: The scale parameter was held fixed. =============================================================================================================== ods select modelfit ParameterEstimates; proc genmod data=tmp order=formatted; title1 "Poisson:scale=Pearson"; where occ>0; format raps raps.; class raps; model Inv=raps / type3 dist=poisson link=log scale=p; run; Poisson:scale=Pearson Criteria For Assessing Goodness Of Fit Criterion DF Value Value/DF Deviance 1978 727.6564 0.3679 Scaled Deviance 1978 316.7118 0.1601 Pearson Chi-Square 1978 4544.5249 2.2975 Scaled Pearson X2 1978 1978.0000 1.0000 Log Likelihood -167.0055 Full Log Likelihood -444.8931 AIC (smaller is better) 899.7862 AICC (smaller is better) 899.8166 BIC (smaller is better) 927.7480 Analysis Of Maximum Likelihood Parameter Estimates Standard Wald 95% Confidence Wald Parameter DF Estimate Error Limits Chi-Square Pr > ChiSq Intercept 1 -3.6990 0.2492 -4.1874 -3.2106 220.34 <.0001 raps Four 1 2.9105 0.7222 1.4950 4.3260 16.24 <.0001 raps One 1 1.5888 0.3548 0.8933 2.2842 20.05 <.0001 raps Three 1 3.0466 0.3924 2.2775 3.8158 60.27 <.0001 raps Two 1 1.5242 0.4640 0.6149 2.4336 10.79 0.0010 raps Zero 0 0.0000 0.0000 0.0000 0.0000 . . Scale 0 1.5158 0.0000 1.5158 1.5158 NOTE: The scale parameter was estimated by the square root of Pearson's Chi-Square/DOF. =============================================================================================================== ods select modelfit ParameterEstimates; proc genmod data=tmp order=formatted; title1 "Poisson:scale=Deviance"; where occ>0; format raps raps.; class raps; model Inv=raps / type3 dist=poisson link=log scale=d; run; Poisson:scale=Deviance Criteria For Assessing Goodness Of Fit Criterion DF Value Value/DF Deviance 1978 727.6564 0.3679 Scaled Deviance 1978 1978.0000 1.0000 Pearson Chi-Square 1978 4544.5249 2.2975 Scaled Pearson X2 1978 12353.4536 6.2454 Log Likelihood -1043.0205 Full Log Likelihood -444.8931 AIC (smaller is better) 899.7862 AICC (smaller is better) 899.8166 BIC (smaller is better) 927.7480 Analysis Of Maximum Likelihood Parameter Estimates Standard Wald 95% Confidence Wald Parameter DF Estimate Error Limits Chi-Square Pr > ChiSq Intercept 1 -3.6990 0.0997 -3.8944 -3.5035 1376.14 <.0001 raps Four 1 2.9105 0.2890 2.3441 3.4769 101.43 <.0001 raps One 1 1.5888 0.1420 1.3105 1.8670 125.20 <.0001 raps Three 1 3.0466 0.1570 2.7389 3.3544 376.44 <.0001 raps Two 1 1.5242 0.1857 1.1603 1.8881 67.40 <.0001 raps Zero 0 0.0000 0.0000 0.0000 0.0000 . . Scale 0 0.6065 0.0000 0.6065 0.6065 NOTE: The scale parameter was estimated by the square root of DEVIANCE/DOF. =============================================================================================================== ods select modelfit ParameterEstimates; proc genmod data=tmp order=formatted; title1 "NegBin:noscale"; where occ>0; format raps raps.; class raps; model Inv=raps / type3 dist=negbin noscale; run; NegBin:noscale Criteria For Assessing Goodness Of Fit Criterion DF Value Value/DF Deviance 1978 727.6564 0.3679 Scaled Deviance 1978 727.6564 0.3679 Pearson Chi-Square 1978 4544.5249 2.2975 Scaled Pearson X2 1978 4544.5249 2.2975 Log Likelihood -383.7010 Full Log Likelihood -444.8931 AIC (smaller is better) 899.7862 AICC (smaller is better) 899.8166 BIC (smaller is better) 927.7480 Analysis Of Maximum Likelihood Parameter Estimates Standard Wald 95% Confidence Wald Parameter DF Estimate Error Limits Chi-Square Pr > ChiSq Intercept 1 -3.6990 0.1644 -4.0212 -3.3767 506.25 <.0001 raps Four 1 2.9105 0.4765 1.9766 3.8444 37.31 <.0001 raps One 1 1.5888 0.2341 1.1299 2.0476 46.06 <.0001 raps Three 1 3.0466 0.2589 2.5392 3.5541 138.48 <.0001 raps Two 1 1.5242 0.3061 0.9243 2.1241 24.80 <.0001 raps Zero 0 0.0000 0.0000 0.0000 0.0000 . . Dispersion 0 0.0000 0.0000 . . NOTE: The negative binomial dispersion parameter was held fixed. =============================================================================================================== ods select modelfit ParameterEstimates; proc genmod data=tmp order=formatted; title1 "NegBin:scale=Pearson"; where occ>0; format raps raps.; class raps; model Inv=raps / type3 dist=negbin scale=p; run; NegBin:scale=Pearson Criteria For Assessing Goodness Of Fit Criterion DF Value Value/DF Deviance 1978 281.1836 0.1422 Scaled Deviance 1978 216.5476 0.1095 Pearson Chi-Square 1978 2568.4019 1.2985 Scaled Pearson X2 1978 1978.0000 1.0000 Log Likelihood -227.8614 Full Log Likelihood -357.0665 AIC (smaller is better) 726.1330 AICC (smaller is better) 726.1755 BIC (smaller is better) 759.6872 Analysis Of Maximum Likelihood Parameter Estimates Standard Wald 95% Confidence Wald Parameter DF Estimate Error Limits Chi-Square Pr > ChiSq Intercept 1 -3.6990 0.2119 -4.1142 -3.2837 304.85 <.0001 raps Four 1 2.9105 1.2786 0.4045 5.4165 5.18 0.0228 raps One 1 1.5888 0.3609 0.8815 2.2960 19.38 <.0001 raps Three 1 3.0466 0.6338 1.8045 4.2888 23.11 <.0001 raps Two 1 1.5242 0.4922 0.5594 2.4890 9.59 0.0020 raps Zero 0 0.0000 0.0000 0.0000 0.0000 . . Dispersion 1 11.2685 3.0312 6.6511 19.0914 NOTE: The covariance matrix was multiplied by a factor of Pearson's Chi-Square/DOF. =============================================================================================================== ods select modelfit ParameterEstimates; proc genmod data=tmp order=formatted; title1 "NegBin:scale=Deviance"; where occ>0; format raps raps.; class raps; model Inv=raps / type3 dist=negbin scale=d; run; NegBin:scale=Deviance Criteria For Assessing Goodness Of Fit Criterion DF Value Value/DF Deviance 1978 281.1836 0.1422 Scaled Deviance 1978 1978.0000 1.0000 Pearson Chi-Square 1978 2568.4019 1.2985 Scaled Pearson X2 1978 18067.5485 9.1343 Log Likelihood -2081.3431 Full Log Likelihood -357.0665 AIC (smaller is better) 726.1330 AICC (smaller is better) 726.1755 BIC (smaller is better) 759.6872 Analysis Of Maximum Likelihood Parameter Estimates Standard Wald 95% Confidence Wald Parameter DF Estimate Error Limits Chi-Square Pr > ChiSq Intercept 1 -3.6990 0.0701 -3.8364 -3.5616 2784.62 <.0001 raps Four 1 2.9105 0.4230 2.0813 3.7397 47.33 <.0001 raps One 1 1.5888 0.1194 1.3547 1.8228 177.06 <.0001 raps Three 1 3.0466 0.2097 2.6356 3.4576 211.09 <.0001 raps Two 1 1.5242 0.1629 1.2050 1.8434 87.58 <.0001 raps Zero 0 0.0000 0.0000 0.0000 0.0000 . . Dispersion 1 11.2685 1.0030 9.4647 13.4161 NOTE: The covariance matrix was multiplied by a factor of DEVIANCE/DOF.
- Mark as New
- Bookmark
- Subscribe
- Mute
- RSS Feed
- Permalink
- Report Inappropriate Content
Looks like both mode are not good ,both have sparse data problem. Maybe you should check other model :
Usage Note 56549: Poisson regression using a generalized Poisson distribution for overdispersed data
- Mark as New
- Bookmark
- Subscribe
- Mute
- RSS Feed
- Permalink
- Report Inappropriate Content
Hi @Ksharp,
Thank you for your quick reply.
May I know what do you mean by sparse data? The number of observation in each level of RAPS?
Thank you.
- Mark as New
- Bookmark
- Subscribe
- Mute
- RSS Feed
- Permalink
- Report Inappropriate Content
Sorry. It is known as overdispersion. It is what you are talking about. Both model 's Deviance/PearsonChiSquare are not equal to 1 .
Try to use a generalization of the Poisson distribution that allows for more variability.
- Mark as New
- Bookmark
- Subscribe
- Mute
- RSS Feed
- Permalink
- Report Inappropriate Content
Hi @Ksharp.
Thank you for your reply.
I tried proc fmm from the link you gave. The result from proc fmm indicates it is better due to lower Fit Statistics.
Will this better Fit Statistics suffice to report the result?
Thank you very much.
proc fmm data=tmp; where occ>0; format raps raps.; class raps; model Inv=raps / dist=genpoisson; output out=fout pred; run; Model Information Data Set WORK.TMP Response Variable INV Type of Model Homogeneous Regression Mixture Distribution Generalized Poisson Components 1 Link Function Log Estimation Method Maximum Likelihood Class Level Information Class Levels Values raps 5 Four One Three Two Zero Number of Observations Read 1987 Number of Observations Used 1983 Optimization Information Optimization Technique Dual Quasi-Newton Parameters in Optimization 6 Mean Function Parameters 5 Scale Parameters 1 Lower Boundaries 1 Upper Boundaries 0 Number of Threads 4 Iteration History Objective Max Iteration Evaluations Function Change Gradient 0 5 409.36479106 . 98.97307 1 2 376.19104009 33.17375098 39.94237 2 3 371.9062368 4.28480328 12.1904 3 3 370.07577813 1.83045867 11.37286 4 2 368.76519848 1.31057965 49.32246 5 2 366.71073524 2.05446324 31.20835 6 7 359.51367257 7.19706267 34.19023 7 3 356.74474967 2.76892290 19.68732 8 3 355.58963948 1.15511019 7.101384 9 3 354.99227853 0.59736095 3.494614 10 3 354.95037557 0.04190296 1.079578 11 3 354.94476031 0.00561526 0.188769 12 3 354.9446361 0.00012421 0.04672 13 3 354.94462919 0.00000691 0.006375 14 3 354.94462905 0.00000014 0.001309 Convergence criterion (GCONV=1E-8) satisfied. Fit Statistics -2 Log Likelihood 709.9 AIC (smaller is better) 721.9 AICC (smaller is better) 721.9 BIC (smaller is better) 755.4 Pearson Statistic 2280.3 Parameter Estimates for 'Generalized Poisson' Model Standard Effect raps Estimate Error z Value Pr > |z| Intercept -3.4037 0.1972 -17.26 <.0001 raps Four 2.6827 0.5947 4.51 <.0001 raps One 0.8117 0.3204 2.53 0.0113 raps Three 2.5387 0.3460 7.34 <.0001 raps Two 1.5412 0.3286 4.69 <.0001 raps Zero 0 . . . Scale Parameter 0.4364 0.08798
- Mark as New
- Bookmark
- Subscribe
- Mute
- RSS Feed
- Permalink
- Report Inappropriate Content
Yes. I think this mode is better than negitive binomial model, since all these
AIC (smaller is better) AICC (smaller is better) BIC (smaller is better)
are smaller .
- Mark as New
- Bookmark
- Subscribe
- Mute
- RSS Feed
- Permalink
- Report Inappropriate Content
I think for Time series also smaller AIC and BIC is better. Could you please tell me why we need to choose the model with smaller AIC and BIC?