BookmarkSubscribeRSS Feed
🔒 This topic is solved and locked. Need further help from the community? Please sign in and ask a new question.

Hi All,

 

I'm not a modeling person, though at times in my life I've run PROC REG, PROC LOGISTIC, and a few other basic modeling PROCs like those.

 

So I know how to fit a linear model like:

 

y= B0 + B1*X1 + B2*X1**2 

 

I've been asked to play around with some data, fitting a model like:

 

y= (B0 + B1*X1 + B2*X1**2 )  *  (1 + B3*X2 + B4*X2**2)  *  (1 + B5*X3 + B6*X3**2)

 

The concept of the model (I think : ) is that the first term in parentheses uses X1 to predict Y, the second term uses X2 to inflate/deflate the prediction, and the third term uses X3 to further inflate/deflate the prediction.  We want estimates of B0-B6, which will ultimately used for prediction/scoring.  Y and all of the predictors are continuous.

 

So this looks to me like it's not an additive model, it's some mix of additive and multiplicative.  I was reading up last night on GLMSELECT, but I don't think it's meant for this sort of model.  What PROCs should I be reading up on?

 

Is this the world of PROC NLIN, PROC MODEL or something else?  I have SAS/STAT SAS/ETS  and SAS/QC.

 

Thanks,

-Q.

The Boston Area SAS Users Group (BASUG) is hosting an in person Meeting & Training on June 27!
Full details and registration info at https://www.basug.org/events.
1 ACCEPTED SOLUTION

Accepted Solutions
Rick_SAS
SAS Super FREQ

I don't think I'd describe the model the same way you did (a quadratic that is inflated/deflated), but I will leave the interpretation to you. Yes, this is probably a good task for PROC NLIN, which performs least-squares estimates for nonlinear regression models. 

 

data Have;
array B[0:6] B0-B6 (1 2 -0.3
                    0.4 -0.5
                    0.1  0.2 );
call streaminit(123);
do x1 = -1 to 1;
   do x2 = -1 to 1;
      do x3 = -1 to 1;
         y = (B0 + B1*X1 + B2*X1**2 )  *  
             (1 + B3*X2 + B4*X2**2)  *  
             (1 + B5*X3 + B6*X3**2)
             + rand("Normal", 0, 0.2);
         output;
      end;
   end;
end;
drop B0-B6;
run;

proc nlin data=Have method=marquardt;
   parms B0 0 
         B1 0
         B2 -1
         B3 0
         B4 -1
         B5 0
         B6 1;
   model Y = (B0 + B1*X1 + B2*X1**2 )  *  
             (1 + B3*X2 + B4*X2**2)  *  
             (1 + B5*X3 + B6*X3**2);
run;

Note well the error structure that I used for the simulated data. The errors are additive. 

View solution in original post

5 REPLIES 5
unison
Lapis Lazuli | Level 10

Perhaps model the log() of your desired model and then it becomes some sort of linear-log model? Just a thought.

 

-unison

-unison
Quentin
Super User

Thanks @unison .  I think that's a good thought when the model is Y=X1*X2*X3, e.g. http://www-ist.massey.ac.nz/dstirlin/CAST/CAST/Hmultiplicative/multiplicative1.html.

 

But I don't have variables being multiplied, I have expressions being multiplied:

 

y= (B0 + B1*X1 + B2*X1**2 )  *  (1 + B3*X2 + B4*X2**2)  *  (1 + B5*X3 + B6*X3**2)

 

And I want an estimate for all 7 parameters (B0-B6).  

 

So I don't have a variable to take the log of.

The Boston Area SAS Users Group (BASUG) is hosting an in person Meeting & Training on June 27!
Full details and registration info at https://www.basug.org/events.
Rick_SAS
SAS Super FREQ

I don't think I'd describe the model the same way you did (a quadratic that is inflated/deflated), but I will leave the interpretation to you. Yes, this is probably a good task for PROC NLIN, which performs least-squares estimates for nonlinear regression models. 

 

data Have;
array B[0:6] B0-B6 (1 2 -0.3
                    0.4 -0.5
                    0.1  0.2 );
call streaminit(123);
do x1 = -1 to 1;
   do x2 = -1 to 1;
      do x3 = -1 to 1;
         y = (B0 + B1*X1 + B2*X1**2 )  *  
             (1 + B3*X2 + B4*X2**2)  *  
             (1 + B5*X3 + B6*X3**2)
             + rand("Normal", 0, 0.2);
         output;
      end;
   end;
end;
drop B0-B6;
run;

proc nlin data=Have method=marquardt;
   parms B0 0 
         B1 0
         B2 -1
         B3 0
         B4 -1
         B5 0
         B6 1;
   model Y = (B0 + B1*X1 + B2*X1**2 )  *  
             (1 + B3*X2 + B4*X2**2)  *  
             (1 + B5*X3 + B6*X3**2);
run;

Note well the error structure that I used for the simulated data. The errors are additive. 

Quentin
Super User

Thanks much @Rick_SAS , will read up on NLIN tonight.  I've used it once before, but I was spoon-fed the code from a statistician.  It is cool how you just write the model.

The Boston Area SAS Users Group (BASUG) is hosting an in person Meeting & Training on June 27!
Full details and registration info at https://www.basug.org/events.
Rick_SAS
SAS Super FREQ

Glad to help. I have some prior experience with simulating data.

hackathon24-white-horiz.png

The 2025 SAS Hackathon Kicks Off on June 11!

Watch the live Hackathon Kickoff to get all the essential information about the SAS Hackathon—including how to join, how to participate, and expert tips for success.

YouTube LinkedIn

What is ANOVA?

ANOVA, or Analysis Of Variance, is used to compare the averages or means of two or more populations to better understand how they differ. Watch this tutorial for more.

Find more tutorials on the SAS Users YouTube channel.

Discussion stats
  • 5 replies
  • 1569 views
  • 6 likes
  • 3 in conversation