Hi all,
My response variable is cognitive function (CASI) which is scored from 0 to 100.
I want to model the relationship between CASI and some predictors.
One reccommendation is to transform CASI to CASI/100 and fit a logistic model.
So here CASI/100 ranges from 0 to 1.
I plan to use PROC GLIMMIX in this case. But I'm not sure which distribution should I specify for this special response variable.
Is it beta distribution? I read somewhere that beta distribution doesn't accept value 0 or 1.
I would love to hear from your experience.
Thank you,
Trang
One approach is to gently rescale the data to lie strictly in (0, 1); see
https://www.ncbi.nlm.nih.gov/pubmed/16594767
A more elegant approach is the zero one inflated beta model; see
http://support.sas.com/resources/papers/proceedings12/325-2012.pdf
and an example
Yes, beta distribution. Unless responses are 0 or 100, you won't need to worry about whether the beta distribution "accepts values 0 or 1."
Yes, you are correct. The procedure will drop observations for which the response is not in (0,1) and will display the NOTE
NOTE: Some observations are not used in the analysis because of: not a
proportion, zero or negative response.
If you have 0 and 1 responses, perhaps beta is not the best model.
I could suggest using GAMMA distribution for CASI variable.
and if you have many zero , try tweedie distribution.
OR
Try Poisson distribution + offset= option. Make an offset variable which is 100 .
One approach is to gently rescale the data to lie strictly in (0, 1); see
https://www.ncbi.nlm.nih.gov/pubmed/16594767
A more elegant approach is the zero one inflated beta model; see
http://support.sas.com/resources/papers/proceedings12/325-2012.pdf
and an example
Registration is now open for SAS Innovate 2025 , our biggest and most exciting global event of the year! Join us in Orlando, FL, May 6-9.
Sign up by Dec. 31 to get the 2024 rate of just $495.
Register now!
ANOVA, or Analysis Of Variance, is used to compare the averages or means of two or more populations to better understand how they differ. Watch this tutorial for more.
Find more tutorials on the SAS Users YouTube channel.