BookmarkSubscribeRSS Feed
ankitasroy
Calcite | Level 5

Hi everyone,

I'm stuck with the following problem-

 

QS-The CARE Network conducted a clinical trial called “TReating Children to Prevent EXacerbations of Asthma (TREXA).” Examine the publication by Martinez et al (Lancet 2011) to get an overview of the study. The study design is a 2 ´ 2 factorial, and three outcome variables are provided (change in height, change in exhaled nitric oxide, and change in forced expiratory volume). Perform a MANOVA that includes checking normal assumptions, checking homogeneity of variance-covariance matrices, and providing appropriate confidence intervals for important effects

dataset- Please see the attachment.

Sas codes I ran and the error message I got are as follows-(Attachment)

 

data TREXA;

set "TREXA.sas7bdat";

label height_change='Change in Height (cm)'

      eno_change='Change in Exhaled Nitric Oxide (ppb)'

      fev1_change='Change in Forced Expiratory Volume (L/min)';

run;

Proc sort data=TREXA;

by drug_arm ;run;

proc univariate data=TREXA plots normal;

by drug_arm;

var height_change eno_change fev1_change;

histogram height_change eno_change fev1_change;

qqplot height_change eno_change fev1_change;

title "TREXA";

title2 'Histograms, Stem-and-Leaf Plots, Box Plots, and Q-Q Plots for Examining Marginal Distributions';

run;

 

*one way manova-;

proc iml;

***********************************************************************

* The intent of this program is to construct d_squared = one-half     *

* times the statistical distance of each observation vector from the  *

* mean vector.  If the observation vectors follow a p-variate normal  *

* distribution, then the d_squared values will follow a chi-square    *

* distribution with p degrees of freedom.                             *

***********************************************************************;

start TREXA;

use TREXA;

read all var {height_change eno_change fev1_change} into x;

n=nrow(x);

xbar_prime=x[+,]/n;

deviations=x-(j(n,1,1)*xbar_prime);

s=(1/(n-1))*deviations`*deviations;

s_inverse=inv(s);

d_squared=0.5*vecdiag(deviations*s_inverse*deviations`);

create chisq_qqplot from d_squared [colname='d_squared'];

append from d_squared;

close chisq_qqplot;

finish TREXA;

run TREXA;

 

error-

999  proc iml;

NOTE: IML Ready

1000

***********************************************************

1000! ************

1001  * The intent of this program is to construct d_squared =

1001! one-half     *

1002  * times the statistical distance of each observation

1002! vector from the  *

1003  * mean vector.  If the observation vectors follow a

1003! p-variate normal  *

1004  * distribution, then the d_squared values will follow a

1004! chi-square    *

1005  * distribution with p degrees of freedom.

1005!             *

1006  **********************************************************

1006! *************;

1007  start TREXA;

1008  use TREXA;

1009  read all var {height_change eno_change fev1_change} into x

1009! ;

1010  n=nrow(x);

1011  xbar_prime=x[+,]/n;

1012  deviations=x-(j(n,1,1)*xbar_prime);

1013  s=(1/(n-1))*deviations`*deviations;

1014  s_inverse=inv(s);

1015  d_squared=0.5*vecdiag(deviations*s_inverse*deviations`);

1016  create chisq_qqplot from d_squared [colname='d_squared'];

1017  append from d_squared;

1018  close chisq_qqplot;

1019  finish TREXA;

NOTE: Module TREXA defined.

1020  run TREXA;

ERROR: (execution) Invalid argument or operand; contains

       missing values.

 

 operation : * at line 1013 column 24

 operands  : _TEM1004, deviations

_TEM1004      3 rows    288 cols    (numeric)

deviations    288 rows      3 cols    (numeric)

 

 statement : ASSIGN at line 1013 column 1

 traceback : module TREXA at line 1013 column 1

 

NOTE: Paused in module TREXA.

 

Can't figure out how to fix the problem.What to write in the "start" and 'Use' comment? Any help will be highly appreciated.Thanks!

 

ASR.

2 REPLIES 2
Rick_SAS
SAS Super FREQ

The ERROR message in the log clearly states that the data contains missing values. The person who wrote this code did not write it to accomodate missing values.

 

You can conduct MANOVA analyses by using SAS procedures, such as GLM, which handle missing values. If you want to use this code, you can extract only the nonmissing observations by foillowing the blog post "Complete cases: How to perform listwise deletion in SAS."  For example, you might try something like this:

 

start TREXA;
use TREXA;
read all var {height_change eno_change fev1_change} into x;

/* handle missing values. See
http://blogs.sas.com/content/iml/2015/02/23/complete-cases.html */
/* return rows that have no missing values */
start CompleteCases(X);
   return( loc(countmiss(X, "row")=0) );
finish;
/* exclude any row with a missing value */
start ExtractCompleteCases(X);
   idx = CompleteCases(X);
   if ncol(idx)>0 then
      return( X[idx, ] );
   else
      return( {} ); 
finish;
 
X = ExtractCompleteCases(X);  /* overwrite X with only complete cases */

/* ...continue program... */
n=nrow(x);
...
lvm
Rhodochrosite | Level 12 lvm
Rhodochrosite | Level 12

If you do decide to analyze the data with a PROC rather than with IML, I highly recommend you read:

http://blogs.sas.com/content/sastraining/2011/02/02/the-punchline-manova-or-a-mixed-model/

If you have missing values, you are much better off using PROC MIXED rather than using PROC GLM.

SAS Innovate 2025: Call for Content

Are you ready for the spotlight? We're accepting content ideas for SAS Innovate 2025 to be held May 6-9 in Orlando, FL. The call is open until September 16. Read more here about why you should contribute and what is in it for you!

Submit your idea!

What is ANOVA?

ANOVA, or Analysis Of Variance, is used to compare the averages or means of two or more populations to better understand how they differ. Watch this tutorial for more.

Find more tutorials on the SAS Users YouTube channel.

Discussion stats
  • 2 replies
  • 1651 views
  • 4 likes
  • 3 in conversation