BookmarkSubscribeRSS Feed
☑ This topic is solved. Need further help from the community? Please sign in and ask a new question.

Hello,

I have a dataset with the following variables: ID (person's ID number), LPA_Daily_min (daily light physical activity in minutes), ST_win (screen time in hours/day), Errors (number of errors on a cognitive test), Female (gender=female), Location (1-5), and Income_thresh (0, no; 1, yes). The aim is to predict Errors from LPA_Daily_min using regression while adjusting for ST_win, Female, Location, and Income_thresh. Data are below:

 

data forSas;
input ID LPA_Daily_min ST_win Errors Female Location Income_thresh;
datalines;
1	139.5225	5.5	3	1	1	1
2	139.5225	6.8571	4	0	1	1
3	62.8618266	5.9643	7	0	1	0
4	118.5685101	6.8214	4	0	1	0
5	78.705	6.9286	1	0	1	1
6	88.9264899	7.2857	0	0	1	0
7	65.9281734	8.7857	5	0	1	1
8	10.7325	10.6071	3	0	1	0
9	53.6625	7.25	1	1	1	1
10	64.9060101	7.8571	6	1	1	0
11	114.48	7.6429	2	1	1	0
12	56.2178367	8	0	0	1	1
13	63.3728367	8.0714	7	1	1	1
14	96.5925	6.1429	2	1	1	0
15	107.8360101	7.2143	1	0	1	1
16	50.085	6.7857	4	0	1	1
17	17.3764899	8.8929	1	0	1	1
18	35.775	6.3214	0	1	1	1
19	60.8175	6	4	0	1	0
20	38.8414899	8	1	0	1	1
21	10.7325	6.6429	1	0	2	1
22	96.5925	8.2143	3	1	2	0
23	55.7068266	6.0714	0	1	2	1
24	96.5925	7.2857	5	0	2	0
25	32.1975	7.5714	4	0	2	0
26	55.1956734	6.5714	3	1	2	0
27	51.1071633	6.1429	10	0	2	1
28	47.5296633	7.5357	0	0	2	0
29	60.8175	6.9643	8	0	2	0
30	74.6164899	7.1429	2	1	2	0
31	57.7510101	6.5	0	1	2	1
32	88.9264899	5.9286	8	1	2	1
33	96.5925	4.5	1	0	2	0
34	75.1275	7.5357	2	0	2	0
35	28.62	6.8214	7	1	2	0
36	94.5481734	7.0357	2	0	2	0
37	96.5925	5.8571	9	0	2	1
38	139.5225	4.9286	2	1	2	1
39	96.5925	7.3571	9	0	2	1
40	93.5260101	7.8571	6	1	2	1
41	92.5039899	5.4286	1	0	2	1
42	48.5518266	8.4643	7	0	2	1
43	101.1921633	5.2143	2	1	2	1
44	118.5685101	5.9643	16	0	2	0
45	71.0389899	6.3571	9	0	2	1
46	44.9743266	4.9286	0	0	2	1
47	63.8839899	6.2857	2	0	2	0
48	121.635	6.3571	1	1	2	1
49	93.015	6.4643	3	1	2	1
50	25.0425	8.2143	4	1	2	1
51	17.8875	7.2143	0	0	2	1
52	96.5925	4.6429	6	0	2	0
53	55.1956734	5.1786	12	0	2	0
54	28.1089899	7.6786	5	0	2	0
55	89.4375	5.0714	1	0	2	0
56	31.6864899	4.8214	0	1	2	0
57	71.0389899	8.7143	4	0	2	1
58	101.1921633	7.5357	17	0	2	1
59	93.5260101	5.25	8	1	2	1
60	83.8156734	7.7857	8	0	2	1
61	127.2568266	5.7857	3	0	2	1
62	75.1275	5	3	0	2	1
63	101.7031734	7.6429	0	0	2	1
64	50.085	9.7857	13	0	2	1
65	139.5225	6.8214	0	1	2	0
66	106.3028367	7.2857	1	1	2	1
67	85.86	6.5357	0	0	2	1
68	113.9689899	8.3929	14	0	2	1
69	12.7768266	6	2	0	2	0
70	29.6421633	7.2857	1	1	2	1
71	55.7068266	6.8929	2	0	2	1
72	60.8175	7.5714	0	1	2	1
73	54.1735101	6	0	1	2	0
74	78.705	4.0714	2	1	2	0
75	34.7528367	6.6071	1	0	2	1
76	32.7085101	4.6786	27	0	2	1
77	50.085	8.1786	6	1	2	1
78	100.6810101	7.8214	7	0	3	1
79	139.5225	5.5	2	1	3	1
80	38.8414899	8.7857	1	1	3	1
81	81.2603367	8	10	0	3	1
82	39.8635101	8.6429	3	1	3	1
83	59.7953367	3.4286	1	0	3	0
84	78.705	7.3571	0	1	3	1
85	17.8875	7.2143	6	0	3	0
86	60.8175	7.7857	0	0	3	0
87	110.3914899	7.5714	7	0	3	1
88	30.6643266	9.6429	3	0	3	1
89	25.5535101	7.5	1	0	3	1
90	56.7289899	7.4286	24	0	3	1
91	38.3303367	7.8571	0	0	3	1
92	46.5075	6.5	1	0	3	1
93	106.8139899	7.25	0	0	3	0
94	113.9689899	7.5	3	1	3	1
95	128.79	6.25	13	1	3	1
96	53.1514899	8.8214	0	1	3	1
97	94.5481734	5.5	5	1	3	0
98	32.7085101	10.4286	3	1	3	1
99	88.4153367	8.25	1	1	3	1
100	26.0646633	7.3929	2	1	3	1
101	16.8653367	5.4643	7	0	3	1
102	88.9264899	5.8214	5	1	3	1
103	30.6643266	6.6071	2	0	3	1
104	40.3746633	7.1071	3	0	3	1
105	17.8875	9	2	0	3	1
106	78.705	8.75	10	1	3	0
107	63.8839899	7.1071	2	0	3	1
108	110.3914899	6.5	2	1	3	1
109	121.1239899	7.2857	1	1	3	1
110	57.7510101	7.7857	3	0	3	1
111	35.775	6.8571	2	0	3	1
112	114.48	7.7143	2	1	3	1
113	50.5960101	8.8571	0	0	3	0
114	36.2860101	7.2857	8	0	3	1
115	79.2160101	6.0714	4	0	3	0
116	89.4375	7.8214	2	1	3	1
117	88.4153367	6.9643	1	1	3	1
118	19.9318266	7.7143	2	0	3	1
119	96.5925	8.4286	4	0	3	1
120	96.5925	8.2857	5	0	3	1
121	81.7714899	8.5357	0	1	3	1
122	139.5225	8.8571	1	0	3	1
123	45.4853367	8.8571	0	1	3	1
124	50.085	7.3214	7	0	3	0
125	96.5925	7.6429	3	0	3	1
126	45.9964899	5.7857	3	1	3	0
127	96.5925	8.3214	0	1	3	1
128	65.4171633	7.5714	3	0	3	1
129	71.0389899	6.2857	7	1	3	1
130	96.5925	7.2143	1	0	3	1
131	95.0593266	7.5	0	0	3	1
132	87.9043266	10.6071	2	0	3	1
133	78.705	8.2143	4	0	3	1
134	84.8378367	5.3571	2	1	3	0
135	88.9264899	7.8214	0	0	3	0
136	61.8396633	7.3929	1	1	3	0
137	30.6643266	7.1786	14	0	3	0
138	60.8175	8.6786	5	0	3	0
139	53.6625	6.8929	2	0	3	1
140	14.8210101	8.9286	0	1	3	0
141	54.6846633	7.8571	0	0	3	1
142	68.4835101	7.9643	0	1	3	1
143	64.9060101	7.8929	2	0	3	1
144	121.635	6.9643	1	1	3	1
145	28.62	2.9286	8	0	3	1
146	54.1735101	8.75	4	1	3	0
147	17.8875	7.75	3	0	3	1
148	58.7731734	7.5	3	1	3	1
149	101.7031734	4.25	25	0	3	1
150	42.4189899	8.5714	24	0	3	1
151	99.1478367	5.3571	1	1	3	0
152	113.9689899	5.5714	3	1	3	0
153	59.7953367	7.7857	1	0	3	1
154	48.0406734	7	3	1	3	1
155	96.5925	7.25	10	0	3	1
156	72.0610101	7.6429	1	1	3	1
157	60.8175	3.7857	6	1	3	1
158	47.0185101	4.6786	5	1	3	0
159	17.8875	2.9286	6	0	3	1
160	121.635	6.75	6	1	3	0
161	118.0575	6.7143	6	1	3	1
162	124.7014899	3.1786	4	0	3	1
163	63.8839899	7.6429	10	0	3	1
164	85.86	6.9286	3	0	3	1
165	119.5906734	7.2143	3	0	4	1
166	28.1089899	5.3571	4	1	4	1
167	36.7971633	6.9286	5	1	4	0
168	68.4835101	4	11	0	4	1
169	62.3506734	5.0357	0	0	4	1
170	42.93	6.8571	3	1	4	0
171	40.3746633	6.2857	5	0	4	0
172	12.7768266	6.6071	3	0	4	1
173	46.5075	7.3571	0	0	4	1
174	121.635	7.3929	6	0	4	1
175	94.0371633	6.4286	5	0	4	1
176	50.5960101	7.25	0	1	4	0
177	38.8414899	7.8929	5	1	4	0
178	93.5260101	6.4286	6	1	4	0
179	96.5925	7.2857	7	0	4	0
180	105.7918266	5.9643	5	0	4	1
181	96.0814899	7.2857	9	0	4	1
182	10.7325	6.4286	3	1	4	1
183	50.5960101	9.5357	5	0	4	0
184	131.8564899	6.7143	4	1	4	1
185	60.3064899	3.9286	2	1	4	0
186	70.5278367	5.5714	10	0	4	0
187	26.0646633	9.2143	8	0	4	0
188	73.0831734	8.7143	1	1	4	1
189	139.5225	10.6071	9	1	4	1
190	93.5260101	4.5714	2	0	4	0
191	139.5225	7.8929	3	1	5	1
192	33.7306734	7.5357	1	1	5	0
193	103.7475	9.1071	6	1	5	0
194	33.2196633	7.8929	8	1	5	0
195	83.3046633	9.5	2	0	5	1
196	128.79	7.8571	7	1	5	0
197	96.5925	6.5	14	0	5	1
198	96.5925	6.5714	10	0	5	0
199	88.9264899	6.6786	10	0	5	0
200	114.48	8.3214	12	0	5	0
201	111.4135101	6.4643	8	1	5	0
202	88.9264899	7.7857	8	0	5	0
203	62.8618266	8.2143	5	0	5	0
204	103.7475	6.6071	7	1	5	0
205	113.9689899	6.6429	9	1	5	1
206	139.5225	10.5714	10	1	5	1
207	22.9981734	7.4643	0	1	5	0
208	42.93	8.8929	38	1	5	1
209	96.5925	6	18	0	5	1
210	42.93	8.1429	11	0	5	0
211	90.9706734	7.25	20	0	5	1
212	105.2806734	8.3571	5	1	5	0
213	67.9725	6.8929	4	0	5	0
214	58.2621633	7.7143	13	0	5	1
215	20.9539899	9.1429	0	0	5	0
216	32.7085101	7.4286	4	0	5	1
217	139.5225	6.75	3	1	5	0
218	82.7935101	7.7143	0	1	5	0
219	25.5535101	9.5	1	1	5	0
220	53.1514899	8	1	1	5	0
221	82.7935101	8.75	1	0	5	0
222	67.9725	7.1071	4	0	5	0
223	57.7510101	7.4286	0	1	5	0
224	54.6846633	5.9286	1	1	5	1
225	61.8396633	7.0357	8	0	5	0
226	73.5943266	7.5714	4	0	5	0
227	10.7325	7.7857	4	1	5	0
228	37.8193266	7.0714	19	0	5	0
229	12.7768266	4	1	1	5	0
230	28.62	6.5357	2	0	5	0
231	85.86	7.6071	2	1	5	0
232	79.7271633	6.6429	7	0	5	0
233	103.7475	7.1429	5	0	5	0
234	39.3525	7.9643	10	1	5	0
235	96.0814899	7.5	3	1	5	1
236	39.3525	2.9286	3	0	5	0
237	96.5925	4	1	1	5	0
238	73.0831734	6.1071	5	1	5	0
239	45.9964899	7.1071	3	1	5	0
240	94.0371633	7.5	2	0	5	1
241	33.2196633	6.75	9	1	5	1
242	59.7953367	6.5714	0	1	5	0
243	113.9689899	5.5357	13	1	5	0
244	69.5056734	8.0357	22	1	5	0
245	54.6846633	7.1071	1	0	5	1
246	27.0868266	6.8571	8	0	5	0
247	10.7325	10.6071	3	1	5	1
248	32.1975	9.1786	3	0	5	0
249	96.5925	7.8571	5	1	5	1
250	96.0814899	6.7143	1	1	5	0
251	60.8175	7.9643	0	0	5	0
252	121.635	8.5357	3	1	5	0
253	67.9725	6.0714	3	0	5	0
254	121.635	6.25	4	1	5	1
255	50.085	8.6429	2	0	5	0
256	39.8635101	6.2857	5	0	5	0
257	71.55	8.4286	12	0	5	1
258	108.8581734	6.5	2	1	5	0
259	96.5925	7.1071	4	0	5	0
260	30.6643266	7.25	4	0	5	0
261	69.5056734	2.9286	2	1	5	1
262	56.7289899	7.8571	3	0	5	0
263	100.6810101	6.9643	1	1	5	0
264	103.7475	8.4643	9	1	5	1
265	95.5703367	5.9286	8	1	5	0
266	55.1956734	8.3214	9	0	5	1
267	96.5925	6.2857	0	0	5	1
268	88.9264899	7.2857	0	0	5	1
269	25.0425	7.25	7	1	5	0
270	89.9485101	7.7857	0	1	5	0
271	113.9689899	4.2143	16	0	5	1
272	53.1514899	6.6429	9	0	5	1
273	71.0389899	9.6071	0	1	5	1
274	39.3525	7.6786	5	1	5	1
275	8.1771633	8.0357	5	1	5	1
276	96.5925	6.3571	0	0	5	1
277	59.7953367	7.5	9	1	5	0
278	96.5925	5.9643	7	0	5	1
279	82.7935101	6.6429	10	1	5	0
280	64.9060101	7.3214	21	1	5	1
281	32.1975	8.3571	1	1	5	0
282	60.3064899	7.2143	3	0	5	1
283	96.0814899	5.7857	6	0	5	1
284	82.7935101	7.4643	9	1	5	0
285	53.6625	7.0714	13	1	5	0
286	54.6846633	8.7143	0	0	5	1
287	85.3489899	7.3929	2	1	5	0
288	106.3028367	4	26	1	5	1
289	92.5039899	6.1429	4	1	5	0
290	85.86	6.6786	9	0	5	1
291	121.1239899	5.9286	6	1	5	1
292	71.0389899	7.3214	2	0	5	0
293	64.9060101	8.6786	9	1	5	1
294	60.8175	8.7857	0	0	5	0
295	52.1293266	6.5	7	0	5	0
296	139.5225	7.6429	6	1	5	0
297	53.6625	5.0714	3	1	5	1
298	85.86	7.5357	2	0	5	0
299	35.2639899	6.7143	6	1	5	0
300	71.0389899	7.3929	3	0	5	0
301	35.775	7	4	0	5	0
302	83.3046633	6.2857	3	0	5	0
303	60.8175	5.75	29	1	5	1
304	93.5260101	6.3214	8	0	5	0
305	41.9078367	6.9286	0	1	5	0
306	60.8175	7.2143	3	1	5	1
307	71.0389899	7.5714	8	1	5	0
308	48.0406734	6.6429	2	0	5	0
309	65.9281734	7.9286	1	1	5	1
310	96.0814899	7.5357	9	0	5	0
311	63.8839899	7.4643	6	1	5	1
312	56.7289899	8.75	4	0	5	0
313	65.9281734	8.2143	0	0	5	0
314	60.8175	6.9286	4	0	5	0
315	65.9281734	3.6786	13	1	5	1
316	56.7289899	7.6429	1	0	5	0
317	81.2603367	10.6071	1	0	5	1
318	60.8175	6.3571	7	0	5	0
319	113.9689899	5.9286	7	0	5	1
320	108.8581734	6.75	7	1	5	1
321	22.9981734	5.8929	6	1	5	0
322	26.0646633	7.3571	5	0	5	0
323	41.3968266	8.5357	2	1	5	0
324	85.86	7.1071	3	1	5	0
325	60.8175	7.1429	1	0	5	1
326	139.5225	6.6071	3	1	5	0
327	124.1903367	2.9286	2	1	5	0
328	73.0831734	8.5	5	1	5	0
329	78.705	8.0357	10	0	5	1
330	101.1921633	7.6786	18	0	5	1
331	42.93	8.9643	3	0	5	0
332	68.4835101	8.0714	7	0	5	0
333	38.8414899	7	7	0	5	1
334	93.015	6.4643	5	0	5	0
335	10.7325	10.6071	1	1	5	0
336	45.9964899	6.7143	0	0	5	0
337	116.5243266	6.7857	5	1	5	0
338	103.7475	7.9643	9	0	5	1
339	45.4853367	7.7143	8	0	5	0
340	93.015	8.6429	1	1	5	0
341	60.3064899	7.5357	22	0	5	0
342	75.6385101	7.5	1	0	5	0
343	53.1514899	4.6429	14	0	5	1
344	50.085	8.7857	7	0	5	0
345	63.8839899	5.75	2	1	5	0
346	53.1514899	5.3571	8	1	5	1
347	14.8210101	7.4286	3	0	5	0
348	94.0371633	5.25	4	1	5	1
349	60.8175	9.25	2	1	5	0
350	28.62	8.4286	1	0	5	0
351	93.015	6.9643	2	1	5	0
352	29.1310101	9.0357	7	0	5	0
353	54.6846633	8	4	1	5	0
354	28.1089899	8.1071	0	0	5	0
355	78.705	8.8214	3	1	5	0
356	45.9964899	5.3214	5	0	5	0
357	76.1496633	7.6429	2	1	5	0
358	63.3728367	7.2857	3	1	5	0
359	30.1531734	7.0714	3	0	5	1
360	124.7014899	8.4643	7	0	5	0
361	96.0814899	5.4286	4	0	5	1
362	25.0425	6.7857	1	1	5	0
363	27.0868266	8.3929	1	1	5	0
364	40.8856734	7	1	1	5	0
365	67.9725	6.8571	6	0	5	0
366	35.2639899	8.8571	0	1	5	0
367	53.6625	8.5714	3	0	5	0
368	53.6625	8.2143	5	1	5	0
369	98.6368266	6.2857	2	1	5	0
370	90.9706734	7.1071	10	1	5	0
371	75.1275	5.6429	1	0	5	1
372	52.6403367	8.5357	5	0	5	1
373	75.1275	7.5714	0	1	5	0
374	28.1089899	8.1071	3	0	5	0
375	75.1275	7.5	5	1	5	0
376	27.0868266	8.6786	12	0	5	1
377	51.1071633	6.9286	3	1	5	1
378	96.5925	9.0357	12	0	5	0
379	82.2825	7.75	11	1	5	1
380	71.55	8.25	30	0	5	1
381	40.3746633	9	0	1	5	0
382	67.9725	5.4286	2	1	5	0
383	39.3525	5.7143	5	0	5	0
384	82.7935101	7.8214	8	1	5	0
385	96.0814899	7.1429	2	1	5	0
386	121.1239899	6.9286	19	1	5	1
387	81.7714899	9.2857	16	0	5	1
388	83.3046633	4.5714	2	1	5	0
389	78.1939899	5.3571	6	0	5	1
390	85.3489899	7.2857	4	0	5	0
391	42.93	8	7	0	5	1
392	45.9964899	9.1429	0	0	5	1
393	114.48	6.3571	1	0	5	0
394	65.4171633	7.6429	6	0	5	1
395	96.5925	6.4286	2	1	5	0
396	58.2621633	6.9286	3	0	5	0
397	73.5943266	7.6071	2	1	5	1
398	53.6625	5.5357	4	0	5	0
399	60.8175	7.7143	19	0	5	0
400	114.9910101	7.0357	15	1	5	1
401	74.6164899	8	1	0	5	1
402	114.9910101	4.1786	2	1	5	1
403	63.3728367	6.6786	10	1	5	1
404	70.0168266	8.1429	12	1	5	0
405	73.5943266	6.3571	1	0	5	0
406	37.3081734	7.4643	12	1	5	1
407	65.4171633	5.4643	2	1	5	0
408	50.085	7.3929	0	1	5	0
409	27.0868266	6.6786	0	1	5	0
410	63.8839899	7.6786	12	1	5	1
411	20.9539899	8.3571	6	1	5	0
412	33.7306734	5.8571	0	1	5	0
413	52.1293266	8.7143	1	0	5	1
414	12.7768266	7.8571	2	0	5	1
415	26.0646633	8.6071	4	1	5	1
416	78.1939899	9.1786	2	1	5	0
417	81.2603367	6.1429	5	0	5	0
418	60.8175	7.2857	1	1	5	0
419	85.86	8.9286	4	0	5	0
420	48.0406734	7.4286	4	0	5	0
421	45.9964899	9.0714	5	0	5	1
422	39.8635101	7.2143	8	0	5	1
423	67.4614899	7.8571	3	0	5	0
424	96.0814899	7	5	1	5	0
425	93.5260101	8.2857	7	1	5	0
426	84.8378367	7.8571	2	0	5	0
427	85.3489899	5.5	9	0	5	0
428	106.8139899	6.5714	15	0	5	0
429	78.705	7.7143	3	0	5	0
430	82.2825	6.6786	2	1	5	0
431	55.7068266	8.8571	1	1	5	1
432	47.5296633	8.0714	1	1	5	1
433	81.2603367	8.1429	6	1	5	1
434	60.8175	6.7857	6	0	5	1
435	12.7768266	8.6429	5	1	5	1
436	75.1275	6.5	1	1	5	0
437	44.4631734	5.9643	7	1	5	0
438	76.6606734	4.5714	2	0	5	0
439	60.8175	7.2857	4	1	5	0
440	81.7714899	8.1786	1	0	5	0
441	88.9264899	5.4286	6	0	5	1
442	96.5925	7.0714	10	0	5	1
443	82.7935101	3.8214	5	1	5	0
444	111.4135101	6.1429	5	0	5	0
;
run;

Here are the the distribution, mean, and variance for Errors:

Errors Frequency Percent Cumulative
Frequency
Cumulative
Percent
0 55 12.39 55 12.39
1 60 13.51 115 25.90
2 57 12.84 172 38.74
3 53 11.94 225 50.68
4 35 7.88 260 58.56
5 37 8.33 297 66.89
6 25 5.63 322 72.52
7 27 6.08 349 78.60
8 19 4.28 368 82.88
9 17 3.83 385 86.71
10 15 3.38 400 90.09
11 3 0.68 403 90.77
12 8 1.80 411 92.57
13 6 1.35 417 93.92
14 4 0.90 421 94.82
15 2 0.45 423 95.27
16 3 0.68 426 95.95
17 1 0.23 427 96.17
18 2 0.45 429 96.62
19 3 0.68 432 97.30
20 1 0.23 433 97.52
21 1 0.23 434 97.75
22 2 0.45 436 98.20
24 2 0.45 438 98.65
25 1 0.23 439 98.87
26 1 0.23 440 99.10
27 1 0.23 441 99.32
29 1 0.23 442 99.55
30 1 0.23 443 99.77
38 1 0.23 444 100.00

 

Analysis Variable : Errors
Mean Variance
4.9797297 27.7264505

 

My instinct was to use a model with a Poisson distribution; however, I realize I need a different distribution due to the overdispersion of Errors. Here was my Poisson model:

 

proc genmod data=forSAS plots=none namelen=65;
class Female Location Income_thresh;
model Errors=LPA_Daily_min ST_win Female Location Income_thresh / 
dist=Poisson;run;

I do not know whether to instead use zero-inflated Poisson, negative binomial, or a zero-inflated negative binomial distribution. Does anyone know how I can determine which distribution is most suitable, and how to justify that (e.g., in a manuscript for publication), like a citation, significance test, and/or threshold number of a certain statistic? Thank you.

1 ACCEPTED SOLUTION

Accepted Solutions
Ksharp
Super User
Check AIC AICC BIC statistics in output, which is smaller and better.

View solution in original post

2 REPLIES 2
Ksharp
Super User
Check AIC AICC BIC statistics in output, which is smaller and better.
StatDave
SAS Super FREQ

See this note on overdispersion. Your Poisson model suggests overdispersion as evidenced by the Pearson or Deviance divided by the DF being considerably larger than 2. The negative binomial is often used for overdispersed data. If you do that, these statistics are only about 1.1 suggesting that overdispersion is not a problem with that model. Or, as suggested in the note, another common approach is to use a GEE model which seems to give a similar estimate on your primary predictor as the non-GEE negative binomial model (using either Poisson or negative binomial distribution in the GEE model).

proc genmod data=forSAS namelen=65;
class Female Location Income_thresh id;
model Errors=LPA_Daily_min ST_win Female Location Income_thresh / dist=negbin;
repeated subject=id;
effectplot fit(x=LPA_Daily_min) / ilink;
run;

sas-innovate-white.png

Missed SAS Innovate in Orlando?

Catch the best of SAS Innovate 2025 — anytime, anywhere. Stream powerful keynotes, real-world demos, and game-changing insights from the world’s leading data and AI minds.

 

Register now

What is ANOVA?

ANOVA, or Analysis Of Variance, is used to compare the averages or means of two or more populations to better understand how they differ. Watch this tutorial for more.

Find more tutorials on the SAS Users YouTube channel.

Discussion stats
  • 2 replies
  • 965 views
  • 3 likes
  • 3 in conversation