With more than one categorical variable, I would run the collinearity diagnostics using k{i}-1 dummy variables for the i-th categorical variable AND I would include the intercept. By using k{i}-1 dummy variables for the i-th categorical variable, you do not overparameterize the model with the reference level for any of your categorical variables. Inclusion of the intercept along with the k{i} - 1 dummy variables also does not result in an overparameterized model.
If you were to use k{i} dummy variables for each categorical variable and you have two or more categorical variables, then you will end up with an overparameterized model. So, it is best to use k{i}-1 dummy variables and include the intercept.