BookmarkSubscribeRSS Feed
aha123
Obsidian | Level 7

I used a logistic regression to build a model to score the value of each customer. Now suppose we have scored 10K customers and plan to run a marketing campaign on them. Two pilot programs had been conducted and the outcomes are summarized below.

Program 1:

Spent $.40 on each customer of first 1K customers. Got 10 purchases and $.45/customer profit.

Spent $.30 on each customer of next 3K customers. Got 20 purchases and $.28/customer profit.

Spent $.20 on each customer of next 5K customers. Got 40 purchases and $.22/customer profit.

Spent $.10 on each customer of next 2K customers. Got 10 purchases and $.12/customer profit.

Program 2:

Spent $.40 on each customer of first 1K customers. Got 10 purchases and $.45/customer profit.

Spent $.30 on each customer of next 2K customers. Got 10 purchases and $.32/customer profit.

Spent $.20 on each customer of next 7K customers. Got 50 purchases and $.20/customer profit.

Spent $.10 on each customer of next 1K customers. Got 5 purchases and $.09/customer profit.

Based on these 2 pilot program outcomes, I would like to see the optimal allocation of marketing spend to maximize the purchases and profit. That each, how many customers need to allocate to spend $.4 group, how many to spend $.3 group. I don't know which math/statistics methods I should use to solve this problem.

1 REPLY 1
SteveDenham
Jade | Level 19

Looks like PROC OPTMODEL, but I am guessing.  Try posting in either the Data Mining or the Operations Research forum--the folks there would have more experience in this area.

Steve Denham

SAS Innovate 2025: Save the Date

 SAS Innovate 2025 is scheduled for May 6-9 in Orlando, FL. Sign up to be first to learn about the agenda and registration!

Save the date!

What is ANOVA?

ANOVA, or Analysis Of Variance, is used to compare the averages or means of two or more populations to better understand how they differ. Watch this tutorial for more.

Find more tutorials on the SAS Users YouTube channel.

Discussion stats
  • 1 reply
  • 1473 views
  • 0 likes
  • 2 in conversation