BookmarkSubscribeRSS Feed
Alexa_Rau
Calcite | Level 5

Hello guys,

 

I need your help in implementing the Evolutionary Solver from Excel (or similar) in SAS.

I have to optimize the confusion matrix and Matthew correlation coeff.

In my table I have the predicted condition which is affected by the solver condition.

 

My table

A           B           ln(A)    ln(B)     Predicted_cond  Observed_Condition

1.02      0.01       0.02    -4.61         1                      1

1.03      0.01      0.03     -4.61         1                      0

1.01      0.001      0.01     -6.91         0                    0

1.01      0.001      0.01     -6.91         0                    1

1.13      0.001      0.12     -6.91         0                    0

1           0.001      0           -6.91         0                    0

1.37       0.01      0.31     -6.91        1                    0

1.16      0.001     0.15     -6.91         0                    1

 

predicted_cond=1 if A>exp(avg(alpha)) and B>exp(avg(beta)) 

Based on predicted and observed condition Matthew Correlation Coefficient (MCC) is computed.

My objective is to maximize MCC, taking in account that predicted condition is dynamic.

Values to be change in order to maximize the MCC are exp(avg(alpha)) and exp(avg(beta)) .

 

 I saw that proc GA has the capability to solve this, but I don't figure out how to implement it.

 

Thanks,

 

 

1 REPLY 1
Rick_SAS
SAS Super FREQ

Since you mention PROC GA, which implements a genetic algorithm, I will mention that PROC IML also has an implementation of a genetic algorithm. There are many examples in the doc.

hackathon24-white-horiz.png

The 2025 SAS Hackathon has begun!

It's finally time to hack! Remember to visit the SAS Hacker's Hub regularly for news and updates.

Latest Updates

What is ANOVA?

ANOVA, or Analysis Of Variance, is used to compare the averages or means of two or more populations to better understand how they differ. Watch this tutorial for more.

Find more tutorials on the SAS Users YouTube channel.

Discussion stats
  • 1 reply
  • 1509 views
  • 0 likes
  • 2 in conversation