BookmarkSubscribeRSS Feed
🔒 This topic is solved and locked. Need further help from the community? Please sign in and ask a new question.
Nancych
Fluorite | Level 6

Hi,

 

I am comparing the treatment difference and looking for the 95% CI by using Proc GLM. However it seems there are different CIs are produced from CLPARM and PDIFF.  Please see the code below: 

 

proc glm data=xxx order=data;
   class usubjid treatment;
   model chg=treatment/solution clparm;
   lsmeans treatment/stderr pdiff cl adjust=dunnett;
  estimate 'Difference' treatment 1 -1;
quit;

 

From option of CLPARM, I got below:

 

Estimate

StdErr

tValue

Probt

LowerCL

UpperCL

-2.03825641

3.79425842

-0.54

0.5924

-9.57081174

5.49429892

 

From option of PDIFF CL, I have,

LowerCL

Difference

UpperCL

-11.177164

-2.038256

7.100651

 

The difference of treatment are same from these two options, but CIs are different. Does anyone know what is the reason and which one we should use? Thanks very much,

 

Nancy

1 ACCEPTED SOLUTION

Accepted Solutions
jiltao
SAS Super FREQ

Yes, you would have to use the output from CLPARM option for what you wanted.

View solution in original post

7 REPLIES 7
PaigeMiller
Diamond | Level 26

What happens if you remove ADJUST=DUNNETT? Does this change give the same confidence intervals?

--
Paige Miller
FreelanceReinh
Jade | Level 19

Hi @Nancych,

 

I guess that variable treatment has more than two levels. In this case the PDIFF CL options have produced at least two differences and confidence intervals (headed "Simultaneous 95% Confidence Limits ..." in the original output) using an "Adjustment for Multiple Comparisons: Dunnett" -- as you requested with the ADJUST=DUNNETT option. Due to this adjustment the confidence intervals are wider in order to control the coverage probability of the intervals simultaneously.

 

If you're interested in only one preplanned comparison, you don't need the adjustment for multiple comparisons and the confidence interval obtained with CLPARM is sufficient. But if you deliberately decided that you need Dunnett's adjustment for comparing, say, both treatment B vs. A and C vs. A, then it would only be consistent to use the PDIFF confidence limits.

Nancych
Fluorite | Level 6

Thank you so much! This is exactly what I have.

 

I got 4 treatments but need to compare individuals and pooled treatments vs placebo. The CIs for pooled one is not available from PDIFF (even without DUNNET). Please see below

 

proc glm data=xxxx order=data;
class usubjid treatment ;
model chg=treatment /solution clparm;
lsmeans treatment /stderr pdiff cl ;
estimate 'trt1 vs pla' treatment 1 0 0 -1;
estimate 'trt2 vs pla' treatment 0 1 0 -1;
estimate 'trt3 vs pla' treatment 0 0 1 -1;
estimate 'trt1&2 vs pla' treatment 0.5 0.5 0 -1;
quit;

 

In this case, if I need CIs for all estimate above (4 of them), I have to consider the CIs from clparm? 

 

Many thanks

 

Nancy

jiltao
SAS Super FREQ

Yes, you would have to use the output from CLPARM option for what you wanted.

FreelanceReinh
Jade | Level 19

@jiltao: Thanks for chiming in. Wouldn't it be an option to switch to PROC MIXED or PROC GLIMMIX and then use an LSMESTIMATE statement like this?

lsmestimate treatment 'trt1 vs pla' 1 0 0 -1 ,
                      'trt2 vs pla' 0 1 0 -1 ,
                      'trt3 vs pla' 0 0 1 -1 ,
                      'trt1&2 vs pla' 0.5 0.5 0 -1 / cl adjust=simulate;

(There is no DUNNETT adjustment available in LSMESTIMATE. On my random test data SIMULATE came closest to the DUNNETT results from LSMEANS.)

jiltao
SAS Super FREQ

Yes, if you wanted to obtain the adjusted CL's, this would be a good approach. Alternatively, you can fit your model in PROC GLM, add the STORE statement in there, then use PROC PLM to do what you wanted with the LSMESTIMATE statements.

SAS Innovate 2025: Save the Date

 SAS Innovate 2025 is scheduled for May 6-9 in Orlando, FL. Sign up to be first to learn about the agenda and registration!

Save the date!

What is ANOVA?

ANOVA, or Analysis Of Variance, is used to compare the averages or means of two or more populations to better understand how they differ. Watch this tutorial for more.

Find more tutorials on the SAS Users YouTube channel.

Discussion stats
  • 7 replies
  • 2414 views
  • 2 likes
  • 4 in conversation