data Remission;
input remiss cell smear infil li blast temp;
datalines;
1 .8 .83 .66 1.9 1.1 .996
1 .9 .36 .32 1.4 .74 .992
0 .8 .88 .7 .8 .176 .982
0 1 .87 .87 .7 1.053 .986
1 .9 .75 .68 1.3 .519 .98
0 1 .65 .65 .6 .519 .982
1 .95 .97 .92 1 1.23 .992
0 .95 .87 .83 1.9 1.354 1.02
0 1 .45 .45 .8 .322 .999
0 .95 .36 .34 .5 0 1.038
0 .85 .39 .33 .7 .279 .988
0 .7 .76 .53 1.2 .146 .982
0 .8 .46 .37 .4 .38 1.006
0 .2 .39 .08 .8 .114 .99
0 1 .9 .9 1.1 1.037 .99
1 1 .84 .84 1.9 2.064 1.02
0 .65 .42 .27 .5 .114 1.014
0 1 .75 .75 1 1.322 1.004
0 .5 .44 .22 .6 .114 .99
1 1 .63 .63 1.1 1.072 .986
0 1 .33 .33 .4 .176 1.01
0 .9 .93 .84 .6 1.591 1.02
1 1 .58 .58 1 .531 1.002
0 .95 .32 .3 1.6 .886 .988
1 1 .6 .6 1.7 .964 .99
1 1 .69 .69 .9 .398 .986
0 1 .73 .73 .7 .398 .986
;
run;
proc logistic data = remission;
model remiss = li;
run;
Proc genmod data=remission;
model remiss = li/ dist=bin link=logit;
run;
proc nlmixed data = remission tech = quanew maxiter = 1000;
parms b0 = 0.1 b1 = 0.2;
eta = b0 + b1 * li;
prob = exp(eta) / (1 + exp(eta));
LH = (prob ** remiss) * ((1 - prob) ** (1 - remiss));
LL = log(LH);
model remiss ~ general(LL);
run;
proc nlmixed data=remission tech = quanew maxiter = 1000;
parms b0 = 0.1 b1 = 0.2;
eta=b0 + b1*li /*+ u*/ ;
expeta=exp(eta);
p=expeta/(1+expeta);
model remiss~ binary(p);
run;
Registration is now open for SAS Innovate 2025 , our biggest and most exciting global event of the year! Join us in Orlando, FL, May 6-9.
Sign up by Dec. 31 to get the 2024 rate of just $495.
Register now!