BookmarkSubscribeRSS Feed
Jbabu
Calcite | Level 5

%let x= 3; are may be increas

%let eq = 300;

%macro code;

proc optmodel;

ods output printtable = TM_ALL;

  var u{i in 1..&eq}>= 0,v{i in 1..&eq}>= 0,

  min z = sum{i in 1..&eq} u + sum{i in 1..&eq} v;con

C1: 0.23 * x1[1] + 0.88 * x2[1] + 0.5549 * x3[1] + 0.1342   + u[1]-v[1] =0.88,

like upt0 300 c1 to c300 constraints are there how to use here loops are arrays any suggestion on my code. help on this

i tried another example i got but i have use calculation like

%do z = 1 %to &variables;

  sum {i in 1..&variables} x&z.=1

  %If &z. < &variables %then %let com1 =,; 

  %else %let com1 = ; &com1.

%end;;

  solve;

print

  %do z=1 %to &variables;

  x&z %end;;

quit;          

%mend;

%code;

1 REPLY 1
RobPratt
SAS Super FREQ

Answered offline via email discussion.  The final code, shown below, did not use any macros.  Also, questions about PROC OPTMODEL in SAS/OR are better suited for the Mathematical Optimization and Operations Research Community.

 

%let variables = 12;

data indata;
   input X1-X&variables;
   datalines;
0.1153   0.3095   0.0749   0.1320   0.1043   0.0434   0.0086   0.0225   0.0162   0.0312   0.0159   0.1261
0.1504   0.3091   0.0794   0.1308   0.0471   0.0491   0.0057   0.0199   0.0327   0.0252   0.0160   0.1344
0.2557   0.2531   0.0906   0.0932   0.0386   0.0495   0.0047   0.0180   0.0336   0.0208   0.0113   0.1308
0.2894   0.2535   0.0846   0.0447   0.0530   0.0518   0.0042   0.0177   0.0260   0.0166   0.0134   0.1451
0.2692   0.2765   0.0830   0.0259   0.0598   0.0524   0.0122   0.0184   0.0241   0.0168   0.0131   0.1486
0.3013   0.2538   0.0765   0.0297   0.0435   0.0452   0.0132   0.0186   0.0240   0.0172   0.0130   0.1642
0.3077   0.2485   0.0812   0.0437   0.0418   0.0449   0.0368   0.0201   0.0266   0.0119   0.0125   0.1245
0.2825   0.2347   0.0829   0.0779   0.0421   0.0449   0.0415   0.0253   0.0253   0.0139   0.0184   0.1105
0.2822   0.2237   0.0889   0.0509   0.0550   0.0431   0.0404   0.0246   0.0276   0.0169   0.0128   0.1338
0.3030   0.2273   0.0936   0.0718   0.0543   0.0572   0.0377   0.0302   0.0232   0.0165   0.0113   0.0737
;

proc optmodel;
   set OBS;
   num c {OBS, 1..&variables};
   read data indata into OBS=[_N_] {j in 1..&variables} <c[_N_,j]=col('X'||j)>;

   ************* step 1********************;
   set EQS = (OBS diff {1}) cross 1..&variables;
   var u{EQS}>= 0,v{EQS}>= 0;

   ************* step 2********************;
   var x {1..&variables, 1..&variables} >= 0;

   ************* step 3********************;
   min z = sum{<i,j> in EQS} u[i,j] + sum{<i,j> in eqs} v[i,j];

   ************* step 4********************;
   con Mycon {<i,j> in EQS}:
      sum {k in 1..&variables} c[i-1,k] * x[k,j] + u[i,j] - v[i,j] = c[i,j];

   ************* step 5********************;
   con SumToOne {i in 1..&variables}:
      sum {k in 1..&variables} x[i,k] = 1;

   solve;

   ************* step 6********************;
   print x;
   create data tm_all from [col1=i]=(1..&variables) {k in 1..&variables} <col('x'||k)=x[k,i]>;
quit; 

hackathon24-white-horiz.png

2025 SAS Hackathon: There is still time!

Good news: We've extended SAS Hackathon registration until Sept. 12, so you still have time to be part of our biggest event yet – our five-year anniversary!

Register Now

How to Concatenate Values

Learn how use the CAT functions in SAS to join values from multiple variables into a single value.

Find more tutorials on the SAS Users YouTube channel.

SAS Training: Just a Click Away

 Ready to level-up your skills? Choose your own adventure.

Browse our catalog!

Discussion stats
  • 1 reply
  • 728 views
  • 0 likes
  • 2 in conversation