proc freq data= have;
title "Summary";
table Class*year / nofreq norow nopercent out=freqtbl;
run;
PROC TABULATE data= have;
title "Final";
keylabel max="#" n="#";
CLASS Year;
Var Group total;
TABLE (((Max*Group)*f=8.)(N*total)), Year;
RUN;
Proc Freq Output:
Proc Tabulate Output:
How about ?
Data have;
infile datalines dlm= " ";
input ID :$20. Class :$2. Year Group Total;
datalines;
A001003 X 2012 5 10
A001003 X 2012 5 10
A001003 X 2012 5 10
A001002 X 2012 5 10
A001004 X 2012 5 10
A001005 X 2012 5 10
A001005 X 2012 5 10
A001004 X 2012 5 10
A001001 X 2012 5 10
A001001 X 2012 5 10
A002007 X 2013 4 8
A002005 X 2013 4 8
A002007 X 2013 4 8
A002003 X 2013 4 8
A002003 X 2013 4 8
A002001 X 2013 4 8
A002007 X 2013 4 8
A002001 X 2013 4 8
A002004 Y 2013 2 3
A002004 Y 2013 2 3
A002002 Y 2013 2 3
A002006 Z 2013 1 2
A002006 Z 2013 1 2
A003003 X 2014 3 5
A003003 X 2014 3 5
A003004 X 2014 3 5
A003001 X 2014 3 5
A003007 X 2014 3 5
A003002 Y 2014 3 7
A003008 Y 2014 3 7
A003005 Y 2014 3 7
A003008 Y 2014 3 7
A003005 Y 2014 3 7
A003005 Y 2014 3 7
A003002 Y 2014 3 7
A003006 Z 2014 1 1
A004004 X 2015 6 12
A004011 X 2015 6 12
A004002 X 2015 6 12
A004007 X 2015 6 12
A004001 X 2015 6 12
A004004 X 2015 6 12
A004011 X 2015 6 12
A004002 X 2015 6 12
A004009 X 2015 6 12
A004001 X 2015 6 12
A004007 X 2015 6 12
A004006 X 2015 6 12
A004010 Y 2015 3 5
A004010 Y 2015 3 5
A004008 Y 2015 3 5
A004008 Y 2015 3 5
A004003 Y 2015 3 5
A004005 Z 2015 1 3
A004005 Z 2015 1 3
A004005 Z 2015 1 3
;
run;
proc sql;
create table temp as
select 1 as id,year,'group' as name,max(group) as value
from have
group by year
union
select 2 as id,year,'total' as name,count(*) as value
from have
group by year
union
select 3 as id,year,catx(' ','% Class',class) as name,
int(100*count(*)/(select count(*) from have where year=a.year)) as value
from have as a
group by year,class
order by id,name
;
quit;
proc transpose data=temp out=want(drop=_name_);
by id name;
id year;
var value;
run;
It would be mightily helpful if we could see the source data. Please post it in a data step with datalines, so we can quickly recreate it.
Data have;
infile datalines dlm= " ";
input ID :$20. Class :$2. Year Group Total;
datalines;
A001003 X 2012 5 10
A001003 X 2012 5 10
A001003 X 2012 5 10
A001002 X 2012 5 10
A001004 X 2012 5 10
A001005 X 2012 5 10
A001005 X 2012 5 10
A001004 X 2012 5 10
A001001 X 2012 5 10
A001001 X 2012 5 10
A002007 X 2013 4 8
A002005 X 2013 4 8
A002007 X 2013 4 8
A002003 X 2013 4 8
A002003 X 2013 4 8
A002001 X 2013 4 8
A002007 X 2013 4 8
A002001 X 2013 4 8
A002004 Y 2013 2 3
A002004 Y 2013 2 3
A002002 Y 2013 2 3
A002006 Z 2013 1 2
A002006 Z 2013 1 2
A003003 X 2014 3 5
A003003 X 2014 3 5
A003004 X 2014 3 5
A003001 X 2014 3 5
A003007 X 2014 3 5
A003002 Y 2014 3 7
A003008 Y 2014 3 7
A003005 Y 2014 3 7
A003008 Y 2014 3 7
A003005 Y 2014 3 7
A003005 Y 2014 3 7
A003002 Y 2014 3 7
A003006 Z 2014 1 1
A004004 X 2015 6 12
A004011 X 2015 6 12
A004002 X 2015 6 12
A004007 X 2015 6 12
A004001 X 2015 6 12
A004004 X 2015 6 12
A004011 X 2015 6 12
A004002 X 2015 6 12
A004009 X 2015 6 12
A004001 X 2015 6 12
A004007 X 2015 6 12
A004006 X 2015 6 12
A004010 Y 2015 3 5
A004010 Y 2015 3 5
A004008 Y 2015 3 5
A004008 Y 2015 3 5
A004003 Y 2015 3 5
A004005 Z 2015 1 3
A004005 Z 2015 1 3
A004005 Z 2015 1 3
;
run;
1) In your code there are two variables that does not exist in the table HAVE:
- resp_Class_Name
- table
2) Is test.Summary a separate table or derivative from HAVE ?
I don't know an elegant way to do it, but the next code:
Data have;
infile datalines dlm= " ";
input ID :$20. Class :$2. Year Group Total;
datalines;
A001003 X 2012 5 10
A001003 X 2012 5 10
A001003 X 2012 5 10
A001002 X 2012 5 10
A001004 X 2012 5 10
A001005 X 2012 5 10
A001005 X 2012 5 10
A001004 X 2012 5 10
A001001 X 2012 5 10
A001001 X 2012 5 10
A002007 X 2013 4 8
A002005 X 2013 4 8
A002007 X 2013 4 8
A002003 X 2013 4 8
A002003 X 2013 4 8
A002001 X 2013 4 8
A002007 X 2013 4 8
A002001 X 2013 4 8
A002004 Y 2013 2 3
A002004 Y 2013 2 3
A002002 Y 2013 2 3
A002006 Z 2013 1 2
A002006 Z 2013 1 2
A003003 X 2014 3 5
A003003 X 2014 3 5
A003004 X 2014 3 5
A003001 X 2014 3 5
A003007 X 2014 3 5
A003002 Y 2014 3 7
A003008 Y 2014 3 7
A003005 Y 2014 3 7
A003008 Y 2014 3 7
A003005 Y 2014 3 7
A003005 Y 2014 3 7
A003002 Y 2014 3 7
A003006 Z 2014 1 1
A004004 X 2015 6 12
A004011 X 2015 6 12
A004002 X 2015 6 12
A004007 X 2015 6 12
A004001 X 2015 6 12
A004004 X 2015 6 12
A004011 X 2015 6 12
A004002 X 2015 6 12
A004009 X 2015 6 12
A004001 X 2015 6 12
A004007 X 2015 6 12
A004006 X 2015 6 12
A004010 Y 2015 3 5
A004010 Y 2015 3 5
A004008 Y 2015 3 5
A004008 Y 2015 3 5
A004003 Y 2015 3 5
A004005 Z 2015 1 3
A004005 Z 2015 1 3
A004005 Z 2015 1 3
;
run;
proc freq data=have; /* test.summary; */
title "FREQ output";
table Class*year / nofreq norow nopercent out=freqtbl;
run;
PROC TABULATE data=have; /* test.Summary; */
title "TABULATE output";
keylabel max="#" n="#";
CLASS Year;
Var Group total;
TABLE (((Max*Group)*f=8.)(N*total)) , Year;
RUN;
proc means data=have nway noprint;
class year;
var group;
output out=summary(drop=_type_) max(group)=group;
run;
proc summary data=freqtbl nway noprint;
class year;
var percent;
output out=temp(keep=year total) sum=total;
run;
proc sort data=freqtbl; by year; run;
proc sort data=summary; by year; run;
data test;
merge freqtbl summary temp;
by year;
pct = ceil(percent / total * 100);
format pct 4.;
run;
/* proc sort data=test; by class year; run; */
data final;
set test end=eof;
by year;
retain y1-y4 cl1-cl4 g1-g4 t1-t4 px1-px4 py1-py4 pz1-pz4;
array cl $ cl1-cl4;
array yx y1-y4;
array gx g1-g4;
array tx t1-t4;
array px px1-px4;
array py py1-py4;
array pz pz1-pz4;
i = year - 2011;
yx(i) = year;
cl(i) = class;
gx(i) = group;
if first.year then tx(i) = _freq_;
if class = 'X' then px(i) = pct;
if class = 'Y' then py(i) = pct;
if class = 'Z' then pz(i) = pct;
length var $10 v1-v4 $6;
array vx v1-v5;
if eof then do;
var = 'Year';
do i=1 to 4; vx(i) = put(yx(i),4.); end; output;
var = 'Group';
do i=1 to 4; vx(i) = put(gx(i),2.); end; output;
var = 'Total';
do i=1 to 4; vx(i) = put(tx(i),2.); end; output;
var = '% Class X';
do i=1 to 4; vx(i) = put(px(i),4.); end; output;
var = '% Class Y';
do i=1 to 4; vx(i) = put(py(i),4.); end; output;
var = '% Class Z';
do i=1 to 4; vx(i) = put(pz(i),4.); end; output;
end;
keep var v1-v4;
run;
data _NULL_;
set final;
file print;
put @1var @12 v1 @17 v2 @22 v3 @27 v4;
run;
How about ?
Data have;
infile datalines dlm= " ";
input ID :$20. Class :$2. Year Group Total;
datalines;
A001003 X 2012 5 10
A001003 X 2012 5 10
A001003 X 2012 5 10
A001002 X 2012 5 10
A001004 X 2012 5 10
A001005 X 2012 5 10
A001005 X 2012 5 10
A001004 X 2012 5 10
A001001 X 2012 5 10
A001001 X 2012 5 10
A002007 X 2013 4 8
A002005 X 2013 4 8
A002007 X 2013 4 8
A002003 X 2013 4 8
A002003 X 2013 4 8
A002001 X 2013 4 8
A002007 X 2013 4 8
A002001 X 2013 4 8
A002004 Y 2013 2 3
A002004 Y 2013 2 3
A002002 Y 2013 2 3
A002006 Z 2013 1 2
A002006 Z 2013 1 2
A003003 X 2014 3 5
A003003 X 2014 3 5
A003004 X 2014 3 5
A003001 X 2014 3 5
A003007 X 2014 3 5
A003002 Y 2014 3 7
A003008 Y 2014 3 7
A003005 Y 2014 3 7
A003008 Y 2014 3 7
A003005 Y 2014 3 7
A003005 Y 2014 3 7
A003002 Y 2014 3 7
A003006 Z 2014 1 1
A004004 X 2015 6 12
A004011 X 2015 6 12
A004002 X 2015 6 12
A004007 X 2015 6 12
A004001 X 2015 6 12
A004004 X 2015 6 12
A004011 X 2015 6 12
A004002 X 2015 6 12
A004009 X 2015 6 12
A004001 X 2015 6 12
A004007 X 2015 6 12
A004006 X 2015 6 12
A004010 Y 2015 3 5
A004010 Y 2015 3 5
A004008 Y 2015 3 5
A004008 Y 2015 3 5
A004003 Y 2015 3 5
A004005 Z 2015 1 3
A004005 Z 2015 1 3
A004005 Z 2015 1 3
;
run;
proc sql;
create table temp as
select 1 as id,year,'group' as name,max(group) as value
from have
group by year
union
select 2 as id,year,'total' as name,count(*) as value
from have
group by year
union
select 3 as id,year,catx(' ','% Class',class) as name,
int(100*count(*)/(select count(*) from have where year=a.year)) as value
from have as a
group by year,class
order by id,name
;
quit;
proc transpose data=temp out=want(drop=_name_);
by id name;
id year;
var value;
run;
It's finally time to hack! Remember to visit the SAS Hacker's Hub regularly for news and updates.
Learn how use the CAT functions in SAS to join values from multiple variables into a single value.
Find more tutorials on the SAS Users YouTube channel.
Ready to level-up your skills? Choose your own adventure.